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Exercises
[bookmark: _Toc364071904]Exercise 1
In this exercise, we will be creating a basic webpage. We will link our css, javascript, and html files so that they are all working and interacting with one another.
1. Create the file structure for your webpage. You will need to create a folder to hold all the files. We will call ours "Exercise-1". You can create this folder anywhere you wish. It may be easiest to locate if you create this file on your Desktop.

2. Within the Exercise-1 folder we created, we will need to create an index.html file. This will be our main page that links everything together. (It needs to be called index.html because that is the default page browsers will look for within a folder). The easiest way to create one of these files is to open Notepad++ on your machine (This should be in your applications from the Start Menu) -> With a blank document open, click "File", choose "Save As" -> Find the folder you created to hold your webpage -> save your file in your folder with the File name "index" and the Type as "Hyper Text Markup Language file".
[image: ]
3. Now we will create our css and javascript files. Since we may have multiple files, we will create folders to keep these organized. Create a "css" folder and a "js" folder in the same directory as your index.html file.

4. Within your css folder, create a file called "style.css". Use the same method you used to create your index.html file. Be sure you're not accidentally overwriting you index.html file. 

5. Within your js folder, create a file called "script.js". Use the same method you used to create your index.html file.

6. Currently, our main web folder should look like this:
[image: ]
7. Now let's write a basic html file and link our css and javascript files. Open your index.html file in notepad++.

8. Write this code to set up your basic structure and link your css and javascript:
[image: ]

Question for thought: What would our process be if we wanted to add additional css and javascript files?
Answer: We would add css files to our css folder and javascript files to our js folder. From there, we would reference these files from index.html, just like we did in lines 5 & 6 of the example above.
9. Open up your index.html file by double clicking on the file to open it in a browser. Your webpage should look similar to this:
[image: ]

10. Now let's make sure our css and javascript files are linked up properly. Open up your "style.css" file that we created earlier in notepad++. Let's target our h2 element with the id "testCSS" by typing:
[image: ]
11. Open your index.html file to see if your css file has updated your webpage. It should now look like this:
[image: ]
12. Now let’s make sure your javascript file is properly working. Open up your “script.js” file that we created earlier in notepad++. Let’s target our button with the id “testJavascript”. If you notice, our button has an “onclick” attribute. This calls the “onclick” function in our javascript file. We will write that function now. To write this function, type:
[image: ]
13. Now open your index.html file again in your browser. To test if our function is working, click the button. You should see something similar to:
[image: ]
14. We now have a basic webpage with working css and javascript.


[bookmark: _Toc364071907]Exercise 2
In this exercise, we will begin coding with jQuery and use it to make changes to our webpage. We will also go through operators, arrays, conditionals, and loops. We’ll build off of the files we created in Exercise 1.
1. First, we will need to add jQuery to our html script. Unlike our other javascript file, jQuery is located on the internet and can be added by typing the URL as the source. We do not need to add anything to our js folder. In your index.html file, add jQuery right above your current script.js file. Your html file should now look like this:
[image: ]
It is important you add jQuery above your other javascript files, because you cannot use jQuery in your other scripts if it is not loaded first.

2. Let’s change our script.js file to see if jQuery was successfully included. Let’s replace your script.js file with:
[image: ]
$(document).ready() is a jQuery function which executes when the webpage is fully loaded. We should put all of our jQuery inside of here so that we know that any elements we want to interact with have been fully loaded before we reference them.

3. Open your index.html file in your browser to see if jQuery is working correctly. You should have an alert popup immediately after the page loads.

4. Once jQuery is working, we can use it to interact with elements on our webpage. Let’s change the behavior of our current button in our html file. Replace our current button with this:
<input id="changeColor" type="button" value="Change Color">

Be sure you changed the id to “changeColor”.

5. If you notice, we got rid of the “onclick” attribute. This will now be handled by jQuery. Let’s write a jQuery event handler for a click event on our button. In our script.js file, let’s replace our alert and add some code to where we have a file that looks like this:
[image: ]
Here we are adding a click handle to the button with id “changeColor”. When that button is clicked, it runs a function which manipulates the h2 element with id “testCSS”. Here we are making that element red and changing the text.

6. We can also hide and show elements on our page using jQuery. Let’s add these two buttons and two paragraphs to the body of our html page:
[image: ]

7. Now that we’ve added these elements to our html page, let’s add some click handlers to our script.js file. We will also use some variable and operators to add text to the paragraph each time the toggle buttons are clicked. Add these lines to script.js:
[image: ]
8. Now test your webpage in the browser. Your toggle buttons should slide and fade your paragraphs. Also, each time you click a toggle button, your paragraphs should grow by one word each time.


[bookmark: _Toc364071910]Exercise 3
In this exercise, we will take a look at conditionals, arrays, and loops. We will add values to an array, test those values using a conditional, and take different actions depending on which condition that value meets. We will build from our Exercise 2 project.
1. Let’s get started by adding these lines to the body of your html file:
[image: ]

1. Now we will add to our script.js file. Here, we will create a blank Array. Then we create a click handler for the “addToArray” button. This click handler will loop through all of the elements in the array and check if the number is greater than 100. The number will be added to the correct paragraph based on which condition it satisfies. Here is the code for the script.js file. This can be added anywhere in the $(document).ready function:
[image: ]
Note: We created the numbersArray outside of the addToArray click function because if it was inside the click function, it would create a new array each time the button is clicked. This would wipe out any previous values we had added to the array.

1. Open your index file and add some values to your array. Try adding values less than and greater than 100. 
1. Now let’s add a “Clear” button to reset the array. In your html file, add the following line directly under your “addToArray” button:
[image: ]

1. Now, let’s add to our script.js file to give this button the functionality we want:
[image: ]
Note: We reset the paragraph text also, so that the old values of the array don’t still populate the text.

1. Now test your html file in a browser. You should be able to add values to the array, test whether they are less than or equal to 100, and clear the array with our new button.


[bookmark: _Toc364071913]Exercise 4
In this exercise, we will create and loop through some objects. We will build off of our Exercise 3 webpage.

1. [image: ]Let's start by creating an object and printing it out onto the screen. Add these lines to the body of your index.html file:

1. [image: ]Now we'll add to our script.js file. Here we will create an object and print it to the screen when our button is clicked:

1. Test your index.html file in your browser to see if the object is printed to your screen.

1. [image: ]Now we will create some more objects and use them to populate some content on our page. Let's add another button and some blank headings to the body of our index.html page:

1. Now create a click handler in our script.js file for the button we just created. We will make 3 different objects and use those objects to give our blank headings some text and color:

[image: ]
1. Test your index.html file and make sure everything is working correctly.


[bookmark: _Toc364071917]Exercise 5
In this exercise, we will create our first map using javascript. We will be using ESRI's online tutorials as our guide. If you visit their site, you can copy and paste their code so that you don't make any tiny mistakes trying to type it yourself.

https://developers.arcgis.com/en/javascript/jstutorials/intro_firstmap_amd.html 

1. Let's start with a blank HTML template. Start with a template like this:

[image: ]
2. To begin working with the ArcGIS API for JavaScript, add the following script and link tags inside the <head> tag. Insert these lines ABOVE your current css and javascript files so that they are loaded before your custom scripts:

[image: ]

3. Now we add the script that creates the map, lines 11 through 30 in your file.
[image: ]
4. We almost have a working map. Now we just need to add a div tag to our index.html file. This is where our map will go. Add this div to the <body> tag of your html file:

[image: ]
5. Go ahead and test your page in a browser to see what you get. You should get a map that doesn't quite take up the whole screen. We will fix that with some css.

6. Let's start with a blank css file. With a blank file, use these styles to style your map:

[image: ]
7. Now reload your page in a browser to see if the map takes up the full screen. Congratulations, you should have your first working map using the javascript API.


[bookmark: _Toc364071920]Exercise 6
In this exercise, we will build off of the first map web map we made in Exercise 5. Try to mix two applications together to make a more complex application.  This time, however, we will use the Sandbox to see how we can test applications online before development.
1. Visit the sample for Getting started with layers and click on the sandbox “Explore in the Sandbox” button
https://developers.arcgis.com/javascript/latest/sample-code/get-started-layers/index.html

[image: ]
2. Now visit the Getting started with popups sample and click its “Explore in the Sandbox” button.
https://developers.arcgis.com/javascript/latest/sample-code/get-started-popup/index.html

3. We want to add the popup functionality from the Popups sample to the Layers sample.
4. Compare the two sets of code and notice both contain a variable named “view”
[image: ]

[image: ]

This presents an easy mechanism to link the two capabilities.
5. First, we must make sure the Layer example has the necessary parts to enact a popup.  This means we must add the Locator tools to the Layer project.  In the require block of the Layer example, copy the Locator parts into the Layer example:
[image: ]

[image: ]

Now we can add the functionality of popups to the Layer example.

6. We need to add the locator layer to the map.  In the popup example, lines 48, 49, and 50 contain our locator layer definition.

[image: ]

Copy those layers to the Layer Sandbox example.  Let’s copy it to just below the “var view” definition in the Layer Sandbox.

7. All the click information happens in the on.click event.  That function is contained in lines 71 through 95 of the Getting started with popups example.
[image: ]

Copy these lines into the Layers Sandbox somewhere after the “var view” line.  Remember scope!  Don’t paste it in the middle of a function!

8. [bookmark: _GoBack]How could we go about including additional functionality into our application?
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

Day 1 – Introduction to Javascript



Who is it for: The person completely new to Javascript and programming



Pre-requisites: Basic HTML and CSS knowledge



What We Will Learn: How to create a basic Javascript program that works in a webpage



Day 2 – Introduction to ArcGIS Javascript API



Who is it for: Anyone who wants to learn the basics of ArcGIS Javascript API



Pre-requisites: A basic knowledge of HTML, CSS, and Javascript



What We Will Learn: How to make a basic interactive map with the ArcGIS Javascript API
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

Events are what they sounds like – things that happen



Common Events



Click(), dblclick(), mouseenter(), mouseleave(), mousedown(), mouseup(), hover(), 

focus(), blur()



Full reference of events



Events allow you to specify something happens when the event happens

$(“#p1”).click(function(){

($this).hide();

});



This code says, “When you click on the element with id p1, hide that element



Code word ‘this’ is important, and it refers to the thing that had the event
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Jquery: Events

Events are what they sounds like – things that happen

Common Events

Click(), dblclick(), mouseenter(), mouseleave(), mousedown(), mouseup(), hover(), focus(), blur()

Full reference of events

Events allow you to specify something happens when the event happens

$(“#p1”).click(function(){

	($this).hide();

});

This code says, “When you click on the element with id p1, hide that element

Code word ‘this’ is important, and it refers to the thing that had the event
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

Broadly speaking, in programming we use ‘get’ and ‘set’ functions to access things



In jquery and html, those are 



text() – gets or sets text of the element



html() – gets or sets the html of the element



val() – gets or sets the value of a form element



If we wanted to get the text of an HTML element, we would write:

var a1 = $(“p”).text();



If we wanted to set the text of an HTML element, we would pass in the text like this:

$(“p”).text(“This is some sample text”);
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Jquery: HTML Interaction

Broadly speaking, in programming we use ‘get’ and ‘set’ functions to access things

In jquery and html, those are 

text() – gets or sets text of the element

html() – gets or sets the html of the element

val() – gets or sets the value of a form element

If we wanted to get the text of an HTML element, we would write:

var a1 = $(“p”).text();

If we wanted to set the text of an HTML element, we would pass in the text like this:

$(“p”).text(“This is some sample text”);
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

You can use Jquery to manipulate the CSS for an element.



Done through addClass() and removeClass() functions.  We can toggle classes with toggleClass() method.



Let’s say you have some CSS that makes an element bold and large text

.bigText{font-weight:bold;font-size:xx-large;}



And you have a HTML element that you want to make big when a button is pressed

<button>Make Big!</button>

<div>Gonna make this big!</div>



The code looks like this

$(document).ready(function(){

$(“button”).click(function(){

$(“div”).addClass(“bigText”);

});

});
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You can use Jquery to manipulate the CSS for an element.

Done through addClass() and removeClass() functions.  We can toggle classes with toggleClass() method.

Let’s say you have some CSS that makes an element bold and large text



.bigText{font-weight:bold;font-size:xx-large;}



And you have a HTML element that you want to make big when a button is pressed



<button>Make Big!</button>

<div>Gonna make this big!</div>



The code looks like this



$(document).ready(function(){

	$(“button”).click(function(){

		$(“div”).addClass(“bigText”);

	});

});
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Goals of the Course

Day 1 – Introduction to Javascript

Who is it for: The person completely new to Javascript and programming

Pre-requisites: Basic HTML and CSS knowledge

What We Will Learn: How to create a basic Javascript program that works in a webpage



Day 2 – Introduction to ArcGIS Javascript API

Who is it for: Anyone who wants to learn the basics of ArcGIS Javascript API

Pre-requisites: A basic knowledge of HTML, CSS, and Javascript

What We Will Learn: How to make a basic interactive map with the ArcGIS Javascript API
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

Control statements allow us give the 

program direction



Variables, constants, arrays, etc are the 

‘what’ of a program



Control statements are the ‘how’ of a 

program



There are 3 types of control 

statements



Conditionals



Loops



Functions
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Control statements are the ‘how’ of a program

There are 3 types of control statements

Conditionals

Loops

Functions
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

It’s pretty simple - If this is true, then do that, otherwise do this other thing



It allows us to control the logic flow of a program – branching logical critical to programming



Generically

If(condition){

Do this if the condition is true

}else{

Do this if the condition is false

}

We start with the keyword ‘if’, then open parentheses, and then a condition we will evaluate to either true or false, close 

parentheses, and then {



The { opens what is called a ‘block’ of code.  To close the block, you put a }



We tab code in the block to make it more human readable – the computer doesn’t care



You can put the { and } on their own lines if you like – the traditional way

if(condition)

{

Do this if condition is true

}

else

{

Do this if condition is false

}
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Conditionals

It’s pretty simple - If this is true, then do that, otherwise do this other thing

It allows us to control the logic flow of a program – branching logical critical to programming

Generically

If(condition){

	Do this if the condition is true

}else{

	Do this if the condition is false

}



We start with the keyword ‘if’, then open parentheses, and then a condition we will evaluate to either true or false, close parentheses, and then {

The { opens what is called a ‘block’ of code.  To close the block, you put a }

We tab code in the block to make it more human readable – the computer doesn’t care

You can put the { and } on their own lines if you like – the traditional way



if(condition)

{

	Do this if condition is true

}

else

{

	Do this if condition is false

}
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

Conditions evaluate to true/false, and they are the outcome of logical and comparison operators.



Consider this code:

var x = 10;

var y = 5;

var z = x – y;

var a1_STR = “”;

If(z < 6){

a1_STR = “You have $5 or less”;

}else{

at_STR = “You have more than $5”;

}



If we change the condition, we can change the outcome



We can also evaluate if something is the same:

var x = 10;

var y = “10”;

var a1_STR = “”;

If(x == y){

a1_STR = “They are the same”;

}else{

a1_STR = “They are different”;

}

What happens if I change the conditional operator to === ?

You can make complex conditions using logical and comparison operators



To avoid confusion, always, always, ALWAYS use parentheses



If((a > 5)&&(b<10))….
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Conditionals: Conditions

Conditions evaluate to true/false, and they are the outcome of logical and comparison operators.

Consider this code:

var x = 10;

var y = 5;

var z = x – y;

var a1_STR = “”;

If(z < 6){

	a1_STR = “You have $5 or less”;

}else{

	at_STR = “You have more than $5”;

}

If we change the condition, we can change the outcome

We can also evaluate if something is the same:

var x = 10;

var y = “10”;

var a1_STR = “”;

If(x == y){

	a1_STR = “They are the same”;

}else{

	a1_STR = “They are different”;

}



What happens if I change the conditional operator to === ?

You can make complex conditions using logical and comparison operators

To avoid confusion, always, always, ALWAYS use parentheses

If((a > 5)&&(b<10))….
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

Sometimes you want to ask a couple of questions and the second question is dependent upon the 

answer to the first.



“Are you free tonight?”, if the answer is yes, then “Do you want to go to the movies?”



We use blocks to nest questions

var a1 = 4;

var a2 = 12;

var a3 = “”;

If(a1 > 5){

if(a2 < 15){

a3 = “The price is between $5 and $15”;

}else{

a3 = “The price is greater than $15”;

}

}else{

a3 = “The price is less than $5”;

}
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Conditionals: Nesting If Statements

Sometimes you want to ask a couple of questions and the second question is dependent upon the answer to the first.

“Are you free tonight?”, if the answer is yes, then “Do you want to go to the movies?”

We use blocks to nest questions

var a1 = 4;

var a2 = 12;

var a3 = “”;

If(a1 > 5){

	if(a2 < 15){

		a3 = “The price is between $5 and $15”;

	}else{

		a3 = “The price is greater than $15”;

	}

}else{

	a3 = “The price is less than $5”;

}
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

Sometimes you want to ask, “Is it this, or that, or this other thing?”



That’s done with the else if clause



You can string as many else if clauses as you want



Normally the ‘default’ clause is the final ‘else’, although it doesn’t have to be that way

var a1 = “blue”;

var a2 = “”;

If(a1 == “red”){

a2 = “It’s a red book”;

}else if(a1 == “green”){

a2 = “It’s a green book”;

}else if(a1 == “yellow”){

a2 = “It’s a yellow book”;

}else if(a1 == “blue”){

a2 = “It’s a blue book”;

}else{

a2 = “I don’t know the color of the book”;

}

57


Microsoft_PowerPoint_Slide56.sldx
Conditionals: Serial Questions

Sometimes you want to ask, “Is it this, or that, or this other thing?”

That’s done with the else if clause

You can string as many else if clauses as you want

Normally the ‘default’ clause is the final ‘else’, although it doesn’t have to be that way

var a1 = “blue”;

var a2 = “”;

If(a1 == “red”){

	a2 = “It’s a red book”;

}else if(a1 == “green”){

	a2 = “It’s a green book”;

}else if(a1 == “yellow”){

	a2 = “It’s a yellow book”;

}else if(a1 == “blue”){

	a2 = “It’s a blue book”;

}else{

	a2 = “I don’t know the color of the book”;

}
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

Codeacademy



JavaScript Track



TONS of great stuff here – longer, more interactive, and better than I can teach in a day



W3C Schools



Javascript Tutorial



Everything you need to develop for and on the web

4
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

If you have a lot of else if clauses, it can be neater to use a switch statement



The condition must me a single evaluation, normally a variable



The default clause is what you do if it can’t find a match in the list

Switch(condition){

Case value1:

Do stuff

break;

Case value2:

Do stuff

break;

default:

break;
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Conditionals: I got a LOT of questions!

If you have a lot of else if clauses, it can be neater to use a switch statement

The condition must me a single evaluation, normally a variable

The default clause is what you do if it can’t find a match in the list

Switch(condition){

Case value1:

Do stuff

break;

Case value2:

Do stuff

break;

default:

break;
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var day = “Sunday”;

var todayType = “”;

switch(day){

case “Monday”:

todayType = “Weekday”;

break;

case “Tuesday”:

todayType = “Weekday”;

break;

case “Wednesday”:

todayType = “Weekday”;

break;

case “Thursday”:

todayType = “Weekday”;

break;

case “Friday”:

todayType = “Weekday”;

break;

case “Saturday”:

todayType = “Weekend”;

break;

case “Sunday”:

todayType = “Weekend”;

break;

}

If(todayType == “Weekend”){

//Party!

}else{

//Get more coffee…. STAT!

}
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Conditionals: Switch

var day = “Sunday”;

var todayType = “”;

switch(day){

	case “Monday”:

		todayType = “Weekday”;

		break;

	case “Tuesday”:

		todayType = “Weekday”;

		break;

	case “Wednesday”:

		todayType = “Weekday”;

		break;

	case “Thursday”:

		todayType = “Weekday”;

		break;

	case “Friday”:

		todayType = “Weekday”;

		break;

	case “Saturday”:

		todayType = “Weekend”;

		break;

	case “Sunday”:

		todayType = “Weekend”;

		break;

}

If(todayType == “Weekend”){

	//Party!

}else{

	//Get more coffee…. STAT!

}
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

Another control statement to control the logic flow of 

the program



It’s a way to do things multiple times until some sort 

of exit clause is met



Works on a block of code, so it can hold multiple 

statements



Javascript has several loops that do different things



While loop



Do…. While loop



For loop (most important)



For/In loop
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Loops

Another control statement to control the logic flow of the program

It’s a way to do things multiple times until some sort of exit clause is met

Works on a block of code, so it can hold multiple statements

Javascript has several loops that do different things

While loop

Do…. While loop

For loop (most important)

For/In loop
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

While something is true, do this over and over.

While(condition){

Code to be executed

}



Have to be careful that at SOME point, the condition is false, otherwise the loop will go forever.



Takes a lot of care to do a while loop



Common error – forgetting to increment a counter



Example

var i = 0;

while(i < 5){

alert(“i = “+i);

}



THIS IS BAD CODE!  I ALWAYS equals 0!

var i = 0;

while(i < 5){

alert(“i = “+i);

i++;

}
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While Loop

While something is true, do this over and over.

While(condition){

Code to be executed

}

Have to be careful that at SOME point, the condition is false, otherwise the loop will go forever.

Takes a lot of care to do a while loop

Common error – forgetting to increment a counter

Example

var i = 0;

while(i < 5){

	alert(“i = “+i);

}

THIS IS BAD CODE!  I ALWAYS equals 0!

var i = 0;

while(i < 5){

	alert(“i = “+i);

	i++;

}
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

Alert is a command to make a popup box show up in a browser.



It’s a special function to show a string – we use the + operator to add the value of the variable to 

the output string.



Can be useful for debugging if the Developer Tools don’t do it for you



It’s written like:

alert(“this is an alert box!”);



There are two special operators, ++ and --, which are useful for loops in particular



We often want to say, “Add one to the variable”, which we would have to write:

var x;

x = x +1;



Programmers are lazy… so they invented an easier way

var x;

x++;



The -- operator subtracts one
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Wait… what’s the ‘alert’ and that ++ thing?

Alert is a command to make a popup box show up in a browser.

It’s a special function to show a string – we use the + operator to add the value of the variable to the output string.

Can be useful for debugging if the Developer Tools don’t do it for you

It’s written like:

alert(“this is an alert box!”);



There are two special operators, ++ and --, which are useful for loops in particular

We often want to say, “Add one to the variable”, which we would have to write:

var x;

x = x +1;

Programmers are lazy… so they invented an easier way

var x;

x++;

The -- operator subtracts one
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Better Places to Learn Javascript

Codeacademy

JavaScript Track

TONS of great stuff here – longer, more interactive, and better than I can teach in a day

W3C Schools

Javascript Tutorial

Everything you need to develop for and on the web
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

Developer tools allow us to see 

what’s going on behind the 

scenes.



Open in Chrome using Menu 

under “More Tools”.  Also F12 

opens



Console the most important for 

Javascript



Use: console.log(“Stuff to say”) 

to have information show up in 

the log.



To show value of a variable:



Console.log(“i = “+i);



Demo
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Debugger

Developer tools allow us to see what’s going on behind the scenes.

Open in Chrome using Menu under “More Tools”.  Also F12 opens

Console the most important for Javascript

Use: console.log(“Stuff to say”) to have information show up in the log.

To show value of a variable:

Console.log(“i = “+i);

Demo
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

Nearly identical to the while loop with one minor change



The condition happens after the loop runs once



In a while loop, the loop sometimes doesn’t run even once because the condition is false



It has the same issues and warnings as a while loop – pay attention to your conditions!  

You have to have an escape plan!



Syntax for a do loop

var j = 0;

do{

alert(“j = “+j);

j++;

}while(j < 3);
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Do Loop

Nearly identical to the while loop with one minor change

The condition happens after the loop runs once

In a while loop, the loop sometimes doesn’t run even once because the condition is false

It has the same issues and warnings as a while loop – pay attention to your conditions!  You have to have an escape plan!

Syntax for a do loop

var j = 0;

do{

	alert(“j = “+j);

	j++;

}while(j < 3);
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

Stolen wholesale from C/C++



For loops allow you to combine a lot of statements into one statement



Most loops have a variable that’s created and initialized



Most have an exit condition



Most have something that should happen if the exit isn’t reached

for(statement1;statement2;statment3){

//do stuff

}

So our while examples would look like:

for(var i=0;i<5;i++){

alert(“i now equals “+i);

}



Some quick notes



Statement 1 provides an initialization variable and value – that’s optional and can happen outside the loop



Statement 2 provides an exit clause – it’s optional 

provided

you give a break clause



Statement 3 provides an increment clause – it’s optional.  You can also increment using any value you want, not 

just 1.  

i=i+10

is valid
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For loops

Stolen wholesale from C/C++

For loops allow you to combine a lot of statements into one statement

Most loops have a variable that’s created and initialized

Most have an exit condition

Most have something that should happen if the exit isn’t reached

for(statement1;statement2;statment3){

	//do stuff

}

So our while examples would look like:

for(var i=0;i<5;i++){

	alert(“i now equals “+i);

}

Some quick notes

Statement 1 provides an initialization variable and value – that’s optional and can happen outside the loop

Statement 2 provides an exit clause – it’s optional provided you give a break clause

Statement 3 provides an increment clause – it’s optional.  You can also increment using any value you want, not just 1.  i=i+10 is valid
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

It is extremely common to use loops and arrays together



You often want to do something to every value in an array



What we do is use the numeric indexes of an Array and combine that with the 

increments of loops to do actions on each element in the array



Let’s say you have an array of hourly wages and you want to give everyone a $.50/hour wage 

bump

var wages = [10.25,9.00,11.50,10.00];

var newWages = [];

for(var i=0;i<3;i++){

newWages[i] = wages[i] + .50;

}



At the end of the loop, newWages will be [10.75,9.50,12.00,10.50], i will be 4, and 

wages will be unchanged.



Remember that arrays start at indexes of 0.  We have 4 elements in our array, so we only 

count to 3… 0,1,2,3.
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For Loops and Arrays

It is extremely common to use loops and arrays together

You often want to do something to every value in an array

What we do is use the numeric indexes of an Array and combine that with the increments of loops to do actions on each element in the array

Let’s say you have an array of hourly wages and you want to give everyone a $.50/hour wage bump

var wages = [10.25,9.00,11.50,10.00];

var newWages = [];

for(var i=0;i<3;i++){

	newWages[i] = wages[i] + .50;

}

At the end of the loop, newWages will be [10.75,9.50,12.00,10.50], i will be 4, and wages will be unchanged.

Remember that arrays start at indexes of 0.  We have 4 elements in our array, so we only count to 3… 0,1,2,3.
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

We can do the same task without having 2 arrays



Statements are evaluated from the right hand side of the equals, then that is put into the 

variable on the left hand side of the equals

var wages = [10.25,9.00,11.50,10.00];

for(var i=0;i<3;i++){

wages[i] = wages[i] + .50;

}



wages will now equal [10.75,9.50,12.00,10.50].  i will equal 3;



Why? Because it reads the current value of wages, adds the value to it, then puts it into the 

current place of wages.
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For Loops and Arrays

We can do the same task without having 2 arrays

Statements are evaluated from the right hand side of the equals, then that is put into the variable on the left hand side of the equals

var wages = [10.25,9.00,11.50,10.00];

for(var i=0;i<3;i++){

	wages[i] = wages[i] + .50;

}

wages will now equal [10.75,9.50,12.00,10.50].  i will equal 3;

Why? Because it reads the current value of wages, adds the value to it, then puts it into the current place of wages.
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

Used for Objects and Associative Arrays



If our index isn’t a number but a string, we can’t add one to it… that doesn’t make sense



What to say – “For each element in this array, do something”



Example

var person={fname:”John”,lname:”Smith”,age:25};

for (x in person){

console.log(x.fname + “ “ +x[lname]+ “ is “+x.age” years

old”);

}

68


Microsoft_PowerPoint_Slide67.sldx
For/In Array

Used for Objects and Associative Arrays

If our index isn’t a number but a string, we can’t add one to it… that doesn’t make sense

What to say – “For each element in this array, do something”

Example

var person={fname:”John”,lname:”Smith”,age:25};

for (x in person){

	console.log(x.fname + “ “ +x[lname]+ “ is “+x.age” years

	old”);

}
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

Don’t get up! – they’re real things in Javascript



Break clause jumps you out of a block of code, like a loop (or the switch statement, if you’ll recall)



Simple keyword of 

break;

stops the code right there

for (var i=0;i<5;i++){

if(i == 2)break;

alert(i);

}



This will alert the numbers 0 and 1, but not 2 because the 

break;

tells it to stop the code right there 

and move to the end of the loop



Continue tells the block of code to skip a step at that point



Similar to break, the simple keyword of 

continue;

skips the loop right there

for(var i=0;i<35;i=i+5){

if(i == 25)continue;

alert(i);

}



This will alert 0,5,10,15,20,30
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Break and Continue

Don’t get up! – they’re real things in Javascript

Break clause jumps you out of a block of code, like a loop (or the switch statement, if you’ll recall)

Simple keyword of break; stops the code right there

for (var i=0;i<5;i++){

	if(i == 2)break;

	alert(i);

}

This will alert the numbers 0 and 1, but not 2 because the break; tells it to stop the code right there and move to the end of the loop

Continue tells the block of code to skip a step at that point

Similar to break, the simple keyword of continue; skips the loop right there

for(var i=0;i<35;i=i+5){

	if(i == 25)continue;

	alert(i);

}

This will alert 0,5,10,15,20,30
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

It is a block of code that gets ‘called’



It does a group of actions



It can take in arguments



It can return values



Functions are the basis for compartmentalizing code



It’s the basic “Lego” upon which we tend to build software



When we do the same thing over and over, use a function



Makes code more readable, more organized, and more maintainable



General form

function functionName(argument1, argument2){

//Block of code here

}
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Functions

It is a block of code that gets ‘called’

It does a group of actions

It can take in arguments

It can return values

Functions are the basis for compartmentalizing code

It’s the basic “Lego” upon which we tend to build software

When we do the same thing over and over, use a function

Makes code more readable, more organized, and more maintainable

General form

function functionName(argument1, argument2){

	//Block of code here

}
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

Look at your code and see if there is any task you need to do more than once



Try to put in a function



We can include all the things we learned thus far within a function (conditions, loops, arrays, etc)



We can have as many arguments as wanted and they can be called anything you like



The arguments become variables with data in them

function myFunc(var1, var2, var3){

alert(“my second variable is “+var2);

}

We can also return values using the keyword 

return

function multip(a,b){

return (a*b);

}

We would call that function like this:

var num1 = 5;

var num2 = 27;

var theResult = multip(num1,num2);

alert(“When you multiply “+num1+” and “+num2+” you get “+theResult);
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Functions: How to Use Them

Look at your code and see if there is any task you need to do more than once

Try to put in a function

We can include all the things we learned thus far within a function (conditions, loops, arrays, etc)

We can have as many arguments as wanted and they can be called anything you like

The arguments become variables with data in them

function myFunc(var1, var2, var3){

	alert(“my second variable is “+var2);

}



We can also return values using the keyword return

function multip(a,b){

	return (a*b);

}



We would call that function like this:

var num1 = 5;

var num2 = 27;

var theResult = multip(num1,num2);

alert(“When you multiply “+num1+” and “+num2+” you get “+theResult);
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

The code in functions can be as extensive as you like



You can even call other functions inside the function



In some contexts, we call functions “methods”



They are basically interchangeable



Important when we get to Objects



The decision to return a value or not is completely up to the needs of the program
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

This is complicated and will make your head bang against a wall



There are two types of scope



Global – applies to the whole program



Local – applies to the inside of a block of code, almost always a function as Javascriptdoesn’t do block scoping



Examples:

var a=5;  //This is a global variable

Function one(){

alert(a); //This can access a because a is global

}

Function two(a){

alert(a); //a is local to the function two because it is passed in

}

Function three(){

var a = 18;

alert(a); //it shows the local variable a, not the global



This only scratches the surface of scope in Javascript – understanding scope is key to good Javascript programming
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

Javascript relies heavily upon objects



But it isn’t object orientated



More object friendly.



Sometimes it makes sense to bundle a things 

information and functions into one box



The box contains the information it knows



The box contains how to manipulate the 

information it knows



Conceptually, it’s like an object in real life
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

Objects have two basic parts



properties (or attributes) 



functions (or methods)



Properties are what they have, methods are what they can do



We bundle them into one thing – an object – and can pass them around and 

manipulate them as needed



Pretty much everything in Javascript is an object



Some built in objects – arrays, strings, dates



Turns out associative arrays are actually objects



Most important skill to master in Javascript
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

Advanced bit here for the programming nerds



Object Orientated Programming has certain characteristics 



Encapsulation



Polymorphism



Abstraction



Javascript doesn’t really have any of these



No way to indicate public/private attributes or methods



You can inherent from only one object



There are no class prototypes



ECMAScript 6 (or 2015) is More OO-ie than not



ECMAScript Compatiability



Can use compilers like Babel to make ECMAScript 6 work with older browsers



Perhaps the more important question – Do I even care?



Javascript isn’t technically a OO language, but it acts really similar to one
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6

Don’t Panic!!

Everything Starts 

Somewhere
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

Objects look an awful lot like variables in Javascript

var myObj = new Object();



This creates a new object that is essentially blank



We use either ‘dot notation’ or ‘bracket notation’ to assign properties to objects

myObj.fname = “Jane”;

myObj.lname = “Doe”;

Or

myObj[fname] = “Jane”;

myObj[lname] = “Doe”;



What does the second approach remind you?



We can use either approach – we’ll mostly use the ‘dot notation’ approach
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

You can use bracket notation on declaration to initialize object properties

var Car = {make:”Ford”,

model:”Fusion”,

year:”2010”,

miles:2078};



Constructors



Special functions that are called when you insatiate (create) an object



In Javascript, they’re normally empty and don’t do anything



However, you can create a constructor by making an object using a function and keyword this



Sometimes you want the value of an attribute to be dependantupon the value of another attribute



Say you wanted a variable called ‘category’ for myCarand that’s got a value of ‘domestic’ or ‘foreign’

function Car(make, model, year, miles,type){

this.make = make;

this.model = model;

this.year = year;

this.miles = miles;

if((make == “Ford”) || (make == “GM”) || (make == “Chrysler”)){

this.type = “domestic”;

}else{

this.type = “foreign”;

}

}
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

From our last example, object creation is done with a var keyword and the keyword 

new 

var myCar = new Car(“Ford”, “F250”, “2001”, “120000”);



You can create any number of Car objects by just calling it multiple times

var dadCar = new Car(“Ford”, “Taurus”, “2011”, “25000”);

var steveCar = new Car(“Toyota”, “Sienna”, “2010”, “30000);
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

Objects can contain properties that are themselves objects



Let’s extend our Car object example

function Car(make,model,year,miles,owner){

this.make = make;

this.model = model;

this.year = year;

this.miles = miles;

this.owner = owner;

}

The property ‘owner’ can itself be an object, such as this:

Function Person(name,sex,height){

this.name = name;

this.sex = sex;

this.height = height;

}

We would create the Person and the Car like this:

var Frank =new Person(“Frank”,”M”,1782);

Var FrankCar = new Car(“Ford”,”F250”,”2001”,120000,Frank);
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

You can mix access methods from dot notation to bracket notation



Important for loops



For/in loops really built for objects



In English, they’re really saying, “For each thing in this object, do this stuff”

var myCar = {make:”Honda”,model:”Civic”,year:2005};

for (x in myCar){

txt = txt + myCar[x];

}
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

We can use dot notation to access methods of objects

var lname = “lafone”;

lname.toUpperCase();



This will result in 

lname

having the value 

LAFONE



Lots of objects have their own methods predefined



String – Properties and Methods



Dates – Properties and Methods



Arrays – Properties and Methods
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

Methods act upon attributes



We can create custom methods to do actions within an object



It looks like a function because it is a function



It happens inside the object block of code – therefore scope is local to object

function Car(make,model,year,miles,owner){

this.make = make;

this.model = model;

this.year = year;

this.miles = miles;

this.owner = owner;

function changeOwner(newOwner){

this.owner = newOwner;

}

function makeOlder(){

this.year++;

}

}
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Making Your Own Methods

Methods act upon attributes

We can create custom methods to do actions within an object

It looks like a function because it is a function

It happens inside the object block of code – therefore scope is local to object



function Car(make,model,year,miles,owner){

	this.make = make;

	this.model = model;

	this.year = year;

	this.miles = miles;

	this.owner = owner;



	function changeOwner(newOwner){

		this.owner = newOwner;

	}



	function makeOlder(){

		this.year++;

	}

}
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var oldOwner = new Person(“James”,”M”,37);

var myCar = new Car(“Ford”,”Focus”,2012,14000,oldOwner);

var newOwner = new Person(“Jane”,”F”,25);

myCar.changeOwner(newOwner);

myCar.makeOlder();



Notice we changed the year from a string to a year – dynamically typed Javascript

doesn’t care



We can name our methods anything we wish



Should adopt some sort of standard so you know what’s a function



We used Camel Case like our variables… we know it’s a function because of the parentheses 

after the name



Methods can have zero arguments
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

API stands for Application Programming Interface



Think of it as a menu of the things a system can do



Different companies and organizations publish APIs as a means of getting at their 

services and information



Provide the basic building blocks from which rich applications can be built



Examples



Google Maps Javascript API



Jquery API Documentation
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

APIs are really nothing more than a menu list of Objects with their attributes and 

their methods



They detail what you need to “pass” to the arguments of methods to get the results 

you seek



Includes details concerning how the methods and attributes work



Usually (but not always) includes an example



Here’s where we steal liberally – Remember, Programmers are thieves!



Examples:



Jquery .click documentation



Jquery .hide documentation
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1. Programmers are lazy

1. A normal person gets handed a job and gets at it.  

A programmer thinks, “I wonder if there is a way I 

can get the computer to do this?”

2. Programmers and thieves

1. Never create what you can take or take and 

modify

3. No, really, Programmers are REALLY lazy

• It takes a certain type of person to think you can 

shorten a sentence like “Take these two numbers 

and add them together, then give me the result.” 

(69 characters)

• In programmer, that’s “function add(int a,int

b){return (a+b)}” (40 characters)

• Code is often just a method of reducing typing

4. Programmers like challenges like puzzles

• How many things can I make out of a handful of 

building blocks?  That’s the essence of every 

language
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

Interactive Maps are Maps



Maps have an audience, a function, and a purpose



Fundamentals apply even if they’re changed



Just because it is capable of doing something does not mean 

it is a good idea



Data



Data limitations don’t change because it’s a snazzy interface



Cloud based data becoming the norm



Responsive Design



Today’s reality is that we live on a lot of devices with different 

sizes and abilities



Responsive design effectively says create the product once, 

but make it respond to the device on which it is running



Remember the wise words of Vinnie Barbarino (if you 

know who that is)



Answer these questions



Who?  What?  Where?  How?

89


Microsoft_PowerPoint_Slide88.sldx
Interactive Maps

Interactive Maps are Maps

Maps have an audience, a function, and a purpose

Fundamentals apply even if they’re changed

Just because it is capable of doing something does not mean it is a good idea

Data

Data limitations don’t change because it’s a snazzy interface

Cloud based data becoming the norm

Responsive Design

Today’s reality is that we live on a lot of devices with different sizes and abilities

Responsive design effectively says create the product once, but make it respond to the device on which it is running

Remember the wise words of Vinnie Barbarino (if you know who that is)

Answer these questions

Who?  What?  Where?  How?

89







image5.jpeg







image2.png







image3.png














image90.emf
90

• ArcGIS API for Javascript

• Used to make interactive web maps

• Works in conjunction with a geographic 

data sources

• Arc Server Services

• KML

• ArcGIS Online

• CSV

• Free to use – not open source!

• Quick procedural note – today is 100% 

stolen by me from ESRI

• Think of us as a tour guide through 

ESRI’s Javascript site

• (Programmers are Theives)
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

How to help ‘jump start’ your application – Sample Code



Pretty much guaranteed no one of these will do everything you want to do



API Reference



Like other API references



Tells you what’s capable



Invaluable when you’re developing



Forum



Everyone started somewhere – there are no dumb questions!



There are many man hours of expertise in the Forum



The developers and maintainers of the API read them Every.  Single.  Day.



Sometimes your issues aren’t just you – there are legitimate bugs (This is an Arc product 

after all)
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

Current Version: 4.4



New releases come quarterly or biannually, but not predicable



Should always include the version number in the link because of this



You can still use 3.x version if you like.  Latest version of that is 3.21



All new development by ESRI is in the 4.x version



Like Jquery, you can either link to the API or download it



Probably should stick with the hosted version unless a specific reason to do otherwise

<script src="http://js.arcgis.com/4.4/"></script>



You also need to link to a CSS file

<link rel="stylesheet" 

href="https://js.arcgis.com/4.4/esri/css/main.css">

Remember, just because you link to one file doesn’t mean you can’t link to your own files 

too!
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Programmers are lazy

A normal person gets handed a job and gets at it.  A programmer thinks, “I wonder if there is a way I can get the computer to do this?”

Programmers and thieves

Never create what you can take or take and modify

No, really, Programmers are REALLY lazy

It takes a certain type of person to think you can shorten a sentence like “Take these two numbers and add them together, then give me the result.” (69 characters)

In programmer, that’s “function add(int a,int b){return (a+b)}” (40 characters)

Code is often just a method of reducing typing

Programmers like challenges like puzzles

How many things can I make out of a handful of building blocks?  That’s the essence of every language
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

There is a lot of free data out there



However, normally you’re interested in publishing your own data



ArcGIS Server



ArcGIS Online



Portal



All use REST Services



REST Services are a way to publish data in a web digestible way



Tech Center Services: http://services.wvgis.wvu.edu/ArcGIS/rest/services



Publishing services the counter part to application programming



Services tell you what you can do with the information you have



Learning to read services is critical
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However, normally you’re interested in publishing your own data

ArcGIS Server

ArcGIS Online

Portal

All use REST Services

REST Services are a way to publish data in a web digestible way

Tech Center Services: http://services.wvgis.wvu.edu/ArcGIS/rest/services

Publishing services the counter part to application programming

Services tell you what you can do with the information you have

Learning to read services is critical
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

Built upon Dojo



Another Javascriptframework like Jquery



They use Dojo for nerdy reasons



You can use Dojo and Jquery at the same time – we normally do here



Two ways to call Dojo:



Legacy (pre-3.4)

dojo.require("esri.map");



AMD – Asynchronous Module Definition (3.6 forward)

require(["dojo/ready"], function(ready){

ready(function(){

// This function won't run until the DOM has loaded and other modules that register have run.

});

});



Similar to Jquery’s

$(“document”).ready(function(){});



You can use either style…. For now.



A lot of elements are done in dojo widgets, also called dijits
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Built upon Dojo

Another Javascript framework like Jquery

They use Dojo for nerdy reasons

You can use Dojo and Jquery at the same time – we normally do here

Two ways to call Dojo:

Legacy (pre-3.4)

dojo.require("esri.map");

AMD – Asynchronous Module Definition (3.6 forward)

require(["dojo/ready"], function(ready){

  ready(function(){

    // This function won't run until the DOM has loaded and other modules that register have run.

  });

});

Similar to Jquery’s $(“document”).ready(function(){});

You can use either style…. For now.

A lot of elements are done in dojo widgets, also called dijits
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

https://developers.arcgis.com/javascript/latest/sample-code/index.html
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

https://developers.arcgis.com/javascript/latest/api-reference/index.html
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Basic Topics



Get started with MapView - Create a 2D map



Get started with layers



Get started with popups

Advanced Topics



Widgets



Features



Data driven visualization



Spatial Queries
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So it’s Java, right?

Where do I get one?

Do I have a Web 1.0, 2.0, or what?

How do you spell it?
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<body>
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- Create a 2D map</title>
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"esri/Map",
"esri/views/MapView",
"dojo/domReady! "

1, function(Map, MapView) {

var map = new Map ({
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D

container

"streets”

new MapView({
viewDiv®,

map: map,

zoom: 4,

cente:

ni
</script>
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view.on("click”

» function(event) {

event. stopPropagation(); // overwrite default click-for-popup behavior

// Get the coordinates of the click on the view

var
var

1at = Math.round(event.napPoint.latitude * 1000) / 1666
lon = Math.round(event.napPoint. longitude * 1008) / 168!

view.popup.open({

// Set the popup’s title to the coordinates of the Location

title: "Reverse geocode: [* + lon + ", " + lat + "]",

locatior

bH

7/ Display the popup
// Execute a reverse geocode using the clicked Location

locatorTask. locationToAddress (event . mapPoint) . then(function(

response) {
// If an address is successfully found, show it in the popup’s content
view.popup.content = response.address;

}).otheruise(function(err) {

// If the promise fails and no result is found, show a generic
view.popup. content =

»;
i

“No address was found for this location”

event.mappoint // Set the Location of the popup to the clicked Locati

message
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• Hyper Text Markup Language

• History

• Created in early 90’s

• Type of SGML (Standard 

Generalized Markup Language)

• Defines what’s on the page

• A list of all the elements you can 

do stuff with and to

• How it’s written 

• Uses keywords surrounded in < 

>

• <keyword> ‘opens’ a tag

• The / symbol means ‘end’

• </keyword> ‘ends’ a tag

• We’re not born in a barn 

programmers!

• If you open a tag, close a tag!

• Two Parts in an HTML Document

• Head

• Body
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• Cascading Style Sheets

• Conceptually around since the late 

70’s

• Married to HTML as early as 1996

• Didn’t really take off in use until 

early 2000’s

• Still have browser issue – no 

browser has EVER implemented 

all of the latest specification

• Defines how the elements in an HTML 

document look

• It lives inside the Head of HTML

• How it’s written

• It’s complicated – see list of 

tutorials for how to get started

• #element_name{tag:value}

• As far as Javascript is concerned, it’s 

all about class!
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Cascading Style Sheets

Conceptually around since the late 70’s

Married to HTML as early as 1996

Didn’t really take off in use until early 2000’s

Still have browser issue – no browser has EVER implemented all of the latest specification

Defines how the elements in an HTML document look

It lives inside the Head of HTML

How it’s written

It’s complicated – see list of tutorials for how to get started

#element_name{tag:value}

As far as Javascript is concerned, it’s all about class!
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•

History

•

Java IS NOT Javascript – they’re different 

things

•

Originally called Livescript, but 

jumped on the Java bandwagon

•

Created in 1995, became a standard in 

1997

•

Originally avoided by ‘real’ 

programmers, but AJAX breathed life 

into it

•

It’s the most popular web language of all 

time

•

It’s the action of the structure and the façade

•

The System

•

HTML is What’s There

•

CSS is How It Looks

•

Javascript is What To Do With What’s 

There and How To Make It Look
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

Linguistically comes from C



The ‘Latin’ of programming



Interpreted Language



Not compiled like C/C++/Java



Runs in the browsers



Object based… but not orientated



Weak, also called dynamic, typing



Can be written with easy, lightweight tools



Simply need a text editor (like Notepad) to write and 

a web browser to run



Lives within web pages



Need to know a little about HTML/CSS to do



There are “browser” issues
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JAVASCRIPT: LANGUAGE BACKGROUND
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

Dozens of Tools – just my favorite 

(Windows Only)



Editing - Notepad++



Free



Text highlighting



Multitabs



Running/Debugging - Chrome



Developer tools a MUST



Similar tools in Firefox
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<!DOCTYPE html>

<html>

<head>

CSS and Javascript Live Here

</head>

<body>

Page Elements Live Here

</body>

</html>

17

Let’s the server know it’s a webpage

Opens the HTML Tag

Starts the Head of the page

Closes the Head of the page

Closes the Body of the page

Starts the Body of the page
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

Hierarchy of what’s on the page



Cross platform and language independent…. 

Except when it isn’t



Every element on a HTML page is something 

on the DOM



Use ‘id’ to give it a name

18

• Can use tabs or spaces to indicate 

hierarchy

• Machine doesn’t care, human’s do
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Can use tabs or spaces to indicate hierarchy

Machine doesn’t care, human’s do
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This is the inner element
</div>
</div>

</body>
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‘THE DOCUMENT OBJECT MODEL (DOM)
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

<div></div>



Short for ‘division’ (or not, depends on who you ask)



It has no visualization in and of itself – just a generic 

container



It’s a ‘block’ level tag – used to block out a group of 

elements



<span></span>



Inline generic container



Usually used around a single element



Functional difference?



Div tends to have a ‘return’ after it where span does 

not.



Div tends to take more ‘rendering’ time.



Don’t be too ‘divisive’!  Use Div sparingly!



Called ‘div-itis’



Also….. Everybody ignores this rule 


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

We can include Javascript in two ways



Type it in our document directly



Link to an outside file



Both use the <script> tag, normally in the head



The in document method makes everything centralized



Good for keeping it all together



Get messy when your programs grow



Doesn’t allow for easy reuse



Linked method fixes most of these problems – use that
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INLINE JAVASCRIPT VS LINKED FILES
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Websites need structure, otherwise it gets hard to 

keep track of what goes where

• Important for organization

• Also important for referencing elements

• Relative vs absolute references

• Allows for easier re-use

• It’s just a pattern to follow… and you can 

pick your own pattern, just 

BE 

CONSISTENT!!
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The Structure for this class

1. Webpages end in .html (e.g. index.html)

1. Website names can be anything, but we use Camel Case for naming

1. Wikipedia For Camel Case

2. First letter is lower case, all other words are first letter upper case, rest lower (e.g. thisIsCamelCase)

2. Use the same for Javascript, so we’ll get used to it

3. Main page is named index.html

2. Major document types get their own directory

1. Javascript files go in ‘js’ directory

2. CSS files go in ‘css’ directory

3. Graphics go in ‘images’ directory

4. Other files (word, excel, pdf, etc) go in ‘misc’ directory

5. If you had other language files such as Php or Python, they would go in ‘include’ directory

1. Not going to have those in this course

3. Feel Free to make up your own after this course!  You can do anything that makes the most sense to you, but the 

important thing is…. 

BE CONSISTENT!!!
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EXERCISE 1: SETUP YOUR WEBSITE
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

Comments, Variables, and 

Statements



Keywords



Literals



Operators



Data Types



Conditionals



Loops
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JAVASCRIPT: LET'S START AT THE VERY
BEGINNING
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

Keywords are words that ‘mean’ something to Javascript



They’re reserved – you can’t use them either willy or nilly



List



break, const, condition, continue, delete, do...while, export, 

for, for...in, function, if...else, import, in, instanceOf, 

label, let, new, return, switch, this, throw, try...catch, 

typeof, var, void, while, with, yield



Incidentally, I’ll use 

courier new

for all Javascript code

25
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

Three little known facts about comments



Comments are cool!



Comments give you warm fuzzies like kittens and 

puppies



Comments are easy and important

(I may have made up one of those facts)



You want to comment your code as much as 

possible



Code should be readable, but sometimes it needs 

some explanation



It helps people who have to look at your code to 

see what you were thinking



Especially important if you look at your own code 

months after creation



How to comment in Javascript

//Single Line Comment

/* Multiline

comment example */
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

You have to follow certain rules when you name something



Names should be upper/lower case letters and numbers (A-Z, a-z, 0-9)



Start with a lower case letter, a underbar _ or $ for names



You can’t use these characters in names: /



You can indicate spaces with an underbar _  



Starting a name with an underbar means something, sorta, kinda…. It’s problematic



You cannot use a keyword as name



You should follow certain conventions



Up to your programming group to create them



For this course, we use camelCase



Names all start with a lowercase letter



The name should be ‘meaningful’.  In other words, calling something aThing isn’t appropriate – you 

bothered to create the thing, give it a real name!



Shorter is normally better because…. Programmers are lazy.



Examples



fName, lName, homePhoneNumber, lovePotionNumber9

27
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

A literal is literally the thing it is!



It’s a thing that should be taken and interpreted at face value



42



“howdy”



“The Rain In Spain Falls Mainly On The Cray Super Computer”



True



3.14
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

Data comes in various types



String



Integer



Real or Float (sometimes both)



Boolean



Object



Array



Javascript is dynamically typed



It has the type of whatever is stuck into it



If you put a string in a variable, the variable is type string.  If you then put an integer in it, 

the variable magically becomes type integer.



This will be the first source of head banging in your adventures in Javascript



Is that really true, or is it “true”?  BAH!
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If you put a string in a variable, the variable is type string.  If you then put an integer in it, the variable magically becomes type integer.

This will be the first source of head banging in your adventures in Javascript

Is that really true, or is it “true”?  BAH!
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

Basically they’re boxes that hold stuff.



They allow you to store things that you may 

need



They can vary, hence the name



You can reuse boxes



Put whatever you want in there



Dynamically typed means you can change 

what goes in there on the fly



Most of what we do in programming is 

manage our variables and shuffle 

information around



Think of variables as the ‘what’ in 

programming – it’s what I have
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

The keyword 

Var 

comes before a variable 

name, thus making it a variable



var firstName;



var phoneNumber;



This is called declaring a variable



You can just make a variable without using 

the keyword 

Var

, but it makes an 

automatically globally scoped variable



X = 42;



We’ll get to scope soon



Bad practice, so avoid it at all costs
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

Javascript is case sensitive!



var firstName;

is not the same thing as 

var firstname;

and 

var FIRSTNAME;

is 

different still



Welcome to your second major source of head 

banging in Javascript



You can declare a variable without 

initializing it



var firstName;



You can also initialize it when you declare 

the variable



var firstName = “Frank”;
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

Use meaningful variable names!



The name should reflect what goes in the 

variable



Var firstName;

is more useful than 

Var 

box1;



Picking names that reflect their intended 

use is sometimes a good idea



If you want it to hold strings, use a name that 

reflects that



Var firstName_STR;
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

Like variables, except they don’t vary.  They’re constant 





Use them if you have a value you never want to change, but you want to reference 

without having to type it in all the time.



Traditional example – PI is 3.14159265359



Can also use other types of constants, like integers or strings



You can’t have a constant and a variable with the same name



Done in Javascript with the keyword 

const

const pi = 3.14159;

const homePage = http://www.wvgis.wvu.edu;
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

They work to get literals into variables, or to get variables into other variables



We’re working with the operator 

= 



It’s basically similar to math, except it’s even easier



The variable we want stuff to end up in goes on the left, the stuff we want to stick 

into the variable goes on the right



Var x = 5;



Var y = x + 10;



Var firstName_STR = “Frank”;



Var officeNum_STR = “431”;



Var aWeirdExampleVar = firstName_STR + y;

(we’ll explain this in a few minutes)
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We’re working with the operator = 

It’s basically similar to math, except it’s even easier

The variable we want stuff to end up in goes on the left, the stuff we want to stick into the variable goes on the right
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

Operators do things to variables



Arithmetic operators



Your basic math operators, +,-,/,*



Var x = 5 *10;



Var x = x + 4;



Assignment operators



The last example is so common we made up operators to 

make it easier (programmers = lazy!)



+=, -=, *=, /=



Var x += 4;



Comparison operators



Used primarily in conditionals



==, !=, ===, !==, >, >=, <, <=



Equal – if = means ‘assign’, then == means ‘are the same’



Var x = 3

means make the variable x hold the value of 3



X == 3

means “is x equal to the value 3?”



=== means ‘are the same AND the same type’



X === ‘3’

means “is x equal to a string whose vale is ‘3’?”



!= means not equal, !== not equal or not the same type



> greater than, >= greater than or equal to



< les than, <= less than or equal to
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

&&

is ‘and’



||

is ‘or’



!

Is ‘not’



Used to string a few logical statements together, 

mostly in conditionals



If(I == !hungry && time == dinner) I wait until I am 

hungry to start dinner.



Translation into English, “if I am not hungry and it is dinner 

time, wait until I am hungry before I start dinner”



Evaluates to either 

true

or 

false



Var a1 = true && true;  //a1 will be true



Var a2 = true && false; //a2 will be false



Var a3 = true || false; //a3 will be true



Var a4 = !true;        //a4 will be false;
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Used to string a few logical statements together, mostly in conditionals

If(I == !hungry && time == dinner) I wait until I am hungry to start dinner.

Translation into English, “if I am not hungry and it is dinner time, wait until I am hungry before I start dinner”
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

Instructors



Frank LaFone



Restrooms down the by the elevators



Parking Passes from the instructor



Refreshments in room 411



Ask questions whenever you like!
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

Starts to get harry here…. + is a string operator



+ with strings means ‘concatenate’



Var firstName_STR = “John”;



Var lastName_STR = “Smith”;



Var name_STR = firstName_STR + lastName_STR;



name_STR will be “JohnSmith”



Why isn’t there a space between the names?



What about that weird thing from before?



Var aWeirdExampleVar = firstName_STR + y;



When you ‘add’ a number to a string, it converts the number to a 

string and concatenates it



Var y = 5;



Var firstName_STR = “Frank”;



Var aWeirdExampleVar = firstName_STR + y;



Result is “Frank5”



There is also a += for strings



Var name_STR = “John”;



name_STR += “ “;



name_STR += “Smith”;



Result: 

John Smith
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

Victor Borge, Punctuation http://www.youtube.com/watch?v=lF4qii8S3gw



We use punctuation in writing to let us know when stuff ends.



In programming, we do the same thing



The computer needs to know when the line is over



We only need one punctuation – the semi-colon ;



It lets us know when a statement is over



I can put multiple statements on one line as long as they have semi-colons



var x = 28; var y = ‘Spring’; var z += y;



Just because you can do something, doesn’t mean you should… but the computer doesn’t care 

either way
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Victor Borge, Punctuation http://www.youtube.com/watch?v=lF4qii8S3gw

We use punctuation in writing to let us know when stuff ends.

In programming, we do the same thing

The computer needs to know when the line is over

We only need one punctuation – the semi-colon ;

It lets us know when a statement is over

I can put multiple statements on one line as long as they have semi-colons

var x = 28; var y = ‘Spring’; var z += y;

Just because you can do something, doesn’t mean you should… but the computer doesn’t care either way
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

This is a special type that can hold other things.  Think of it as a box with smaller boxes in it



Arrays are useful to store a series of values in a single value



They are several “index” (or “key”) and then “value” pairs put together in a row of sorts



Visualy it looks like this:



We create arrays in Javascript with the keywords 

new

and 

Array

var colors = new Array();



That creates an empty array with nothing in it.  We can access the elements in the array using a numeric index

colors[0] = “red”;

colors[1] = “blue”;

colors[2] = “yellow”;



Arrays always start a 0



The third thing that will make you want to bang your head in Javascript

If I wanted to get thing in the second box, I would write:

var myShirt = colors[1];



You can also create arrays with elements in them using the constructor

var grades = new Array(87,93,74,98,82,65);
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We create arrays in Javascript with the keywords new and Array

var colors = new Array();

That creates an empty array with nothing in it.  We can access the elements in the array using a numeric index

colors[0] = “red”;

colors[1] = “blue”;

colors[2] = “yellow”;

Arrays always start a 0

The third thing that will make you want to bang your head in Javascript

If I wanted to get thing in the second box, I would write:

var myShirt = colors[1];

You can also create arrays with elements in them using the constructor

var grades = new Array(87,93,74,98,82,65);
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

Yet another way to create an Array is with simple [ and ]

var myData = [];

var someData = [“London”, 32, “Madrid”, 12];



Yep, you can mix data types within an array because Javascript is dynamically 

typed
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

Sometimes you want a grid construction.  That’s done with multidimensional arrays.



Like a table



Each element is indexed starting at 0.



Element 0,0 is the upper left of the table



Element 2,1 is the upper right of the table



You can move into 3 dimensional arrays, which look like a cube



We can even go higher – most modern computers will handle at least a 32bit integer 

index, or 4.29 billion elements



Honestly, your brain starts to hurt around 3-4 dimensions though
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Each element is indexed starting at 0.

Element 0,0 is the upper left of the table

Element 2,1 is the upper right of the table

You can move into 3 dimensional arrays, which look like a cube

We can even go higher – most modern computers will handle at least a 32bit integer index, or 4.29 billion elements

Honestly, your brain starts to hurt around 3-4 dimensions though





42

		0,0		1,0		2,0

		0,1		1,1		2,1

		0,2		1,2		2,2







image2.png







image3.png









ARRAYS; MULTIDIMERSIONAL






Microsoft_PowerPoint_Slide1.sldx
Various and Sundry Items

Instructors

Frank LaFone



Restrooms down the by the elevators

Parking Passes from the instructor

Refreshments in room 411



Ask questions whenever you like!
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

To create in Javascript, we can add a second set of brackets

var myData = [][];

myData[0][0] = 75;

myData[0][1] = 81;



We can also us the new and array keywords

var myData = new Array();

myData[0] = new Array();

myData[0][0] = “red”;

myData[0][1] = “blue”;



We can also initialize on one line

var myData = [“hello”, [86,90,74,25], “red”];



The second element in this array is itself an array
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

Sometimes you don’t want the index to be a number



Might make sense to use a string or object or some other index



Classic example:



Employee name as the index for other pieces of information, such as phone numbers, address, employee type, 

benefits, etc.



They’re similar to multidimensional arrays, but slightly different

var myClothes = {pants:[“jeans”,”dress”,”suit”], 

shirts:[“polo”,”tshirt”,”dress”], shoes:[“tennis”,”golf”,”dress”,”boots”]};



Things to note



starts and closes with { and } 



Indexes aren’t in parentheses



How to access in javascript

var todaysOutfit = “I am wearing “+myClothes[‘pants’][0]+” today.”;



We tend to use objects instead of associative arrays – we’ll get to those soon
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

Frameworks give us an existing structure to do 

common tasks



Means we don’t have to recode everything from 

scratch



We can mix our custom code with the framework 

code



Frameworks do a number of things



AJAX (Asynchronous Javascript and XML)



DOM Wrappers (Document Object Model)



Visual Effects



JSON (JavaScript Object Notation)



CSS manipulation



Others



There are a number of Frameworks, but two 

common one



jquery



Dojo
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

Jquery is the most popular framework (more information)



You can either download it and link it in your code, or link to a hosted version



Downloaded



‘freezes’ the version to whatever your downloaded



When jquery changes, it doesn’t impact your code



You don’t get new features or abilities with new releases unless you redownload



Takes space on your website (small, so not really an issue)



Hosted



You just link to it



Most up to date version kept up to date by someone else



If the code changes, could break your code (but probably not)



Requires link to the ‘other’ server – if they go down, your code doesn’t work



Google is your best bet for hosted solution



Google stays up most of the time



You can specify which version you want



How to link to Google’s hosted

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>

If you want a different version, just change the number from 1.10.2 to whatever version, say 2.0.3

Google’s list of hosted libraries.
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

The format for jquery tags are the same

$(selector).action()



Jquery knows how to start doing it’s job with a document ready call



This prevents any of the code running before the whole page has loaded



When a page loads, it starts from the top and works its way down



You want the code to run after everything has been made on the page

$document.ready(function()){

//Jquery code (or javascript code) goes here

});



You reference selectors by name, id, or class



By name: 

$(“test”).

action

();



By id: 

$(“#test”).

action

();



By class: 

$(“.test”).

action

();



Actions are a things you can do to the item on the page
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