

	Slide 1

	Slide 2

	Slide 3

	Slide 4

	Slide 5

	Slide 6

	Slide 7

	Slide 8

	Slide 9

	Slide 10

	Slide 11

	Slide 12

	Slide 13

	Slide 14

	Slide 15

	Slide 16

	Slide 17

	Slide 18

	Slide 19

	Slide 20

	Slide 21

	Slide 22

	Slide 23

	Slide 24

	Slide 25

	Slide 26

	Slide 27

	Slide 28

	Slide 29

	Slide 30

	Slide 31

	Slide 32

	Slide 33

	Slide 34

	Slide 35

	Slide 36

	Slide 37

	Slide 38

	Slide 39

	Slide 40

	Slide 41

	Slide 42

	Slide 43

	Slide 44

	Slide 45

	Slide 46

	Slide 47

	Slide 48

	Slide 49

	Slide 50

	Slide 51

	Slide 52

	Slide 53

	Slide 54

	Slide 55

	Slide 56

	Slide 57

	Slide 58

	Slide 59

	Slide 60

	Slide 61

	Slide 62

	Slide 63

	Slide 64

	Slide 65

	Slide 66

	Slide 67

	Slide 68

	Slide 69

	Slide 70

	Slide 71

	Slide 72

	Slide 73

	Slide 74

	Slide 75

	Slide 76

	Slide 77

	Slide 78

	Slide 79

	Slide 80

	Slide 81

	Slide 82

	Slide 83

	Slide 84

	Slide 85

	Slide 86

	Slide 87

	Slide 88

	Slide 89

	Slide 90

	Slide 91

	Slide 92

	Slide 93

	Slide 94

	Slide 95

	Slide 96

	Slide 97

	Slide 98

	Slide 99

	Slide 100

	Slide 101

	Slide 102

	Slide 103

	Slide 104

	Slide 105

	Slide 106

Exercises
[bookmark: _Toc364071904]Exercise 1
In this exercise, we will be creating a basic webpage. We will link our css, javascript, and html files so that they are all working and interacting with one another.
1. Create the file structure for your webpage. You will need to create a folder to hold all the files. We will call ours "Exercise-1". You can create this folder anywhere you wish. It may be easiest to locate if you create this file on your Desktop.

2. Within the Exercise-1 folder we created, we will need to create an index.html file. This will be our main page that links everything together. (It needs to be called index.html because that is the default page browsers will look for within a folder). The easiest way to create one of these files is to open Notepad++ on your machine (This should be in your applications from the Start Menu) -> With a blank document open, click "File", choose "Save As" -> Find the folder you created to hold your webpage -> save your file in your folder with the File name "index" and the Type as "Hyper Text Markup Language file".
[image:]
3. Now we will create our css and javascript files. Since we may have multiple files, we will create folders to keep these organized. Create a "css" folder and a "js" folder in the same directory as your index.html file.

4. Within your css folder, create a file called "style.css". Use the same method you used to create your index.html file. Be sure you're not accidentally overwriting you index.html file.

5. Within your js folder, create a file called "script.js". Use the same method you used to create your index.html file.

6. Currently, our main web folder should look like this:
[image:]
7. Now let's write a basic html file and link our css and javascript files. Open your index.html file in notepad++.

8. Write this code to set up your basic structure and link your css and javascript:
[image:]

Question for thought: What would our process be if we wanted to add additional css and javascript files?
Answer: We would add css files to our css folder and javascript files to our js folder. From there, we would reference these files from index.html, just like we did in lines 5 & 6 of the example above.
9. Open up your index.html file by double clicking on the file to open it in a browser. Your webpage should look similar to this:
[image:]

10. Now let's make sure our css and javascript files are linked up properly. Open up your "style.css" file that we created earlier in notepad++. Let's target our h2 element with the id "testCSS" by typing:
[image:]
11. Open your index.html file to see if your css file has updated your webpage. It should now look like this:
[image:]
12. Now let’s make sure your javascript file is properly working. Open up your “script.js” file that we created earlier in notepad++. Let’s target our button with the id “testJavascript”. If you notice, our button has an “onclick” attribute. This calls the “onclick” function in our javascript file. We will write that function now. To write this function, type:
[image:]
13. Now open your index.html file again in your browser. To test if our function is working, click the button. You should see something similar to:
[image:]
14. We now have a basic webpage with working css and javascript.

[bookmark: _Toc364071907]Exercise 2
In this exercise, we will begin coding with jQuery and use it to make changes to our webpage. We will also go through operators, arrays, conditionals, and loops. We’ll build off of the files we created in Exercise 1.
1. First, we will need to add jQuery to our html script. Unlike our other javascript file, jQuery is located on the internet and can be added by typing the URL as the source. We do not need to add anything to our js folder. In your index.html file, add jQuery right above your current script.js file. Your html file should now look like this:
[image:]
It is important you add jQuery above your other javascript files, because you cannot use jQuery in your other scripts if it is not loaded first.

2. Let’s change our script.js file to see if jQuery was successfully included. Let’s replace your script.js file with:
[image:]
$(document).ready() is a jQuery function which executes when the webpage is fully loaded. We should put all of our jQuery inside of here so that we know that any elements we want to interact with have been fully loaded before we reference them.

3. Open your index.html file in your browser to see if jQuery is working correctly. You should have an alert popup immediately after the page loads.

4. Once jQuery is working, we can use it to interact with elements on our webpage. Let’s change the behavior of our current button in our html file. Replace our current button with this:
<input id="changeColor" type="button" value="Change Color">

Be sure you changed the id to “changeColor”.

5. If you notice, we got rid of the “onclick” attribute. This will now be handled by jQuery. Let’s write a jQuery event handler for a click event on our button. In our script.js file, let’s replace our alert and add some code to where we have a file that looks like this:
[image:]
Here we are adding a click handle to the button with id “changeColor”. When that button is clicked, it runs a function which manipulates the h2 element with id “testCSS”. Here we are making that element red and changing the text.

6. We can also hide and show elements on our page using jQuery. Let’s add these two buttons and two paragraphs to the body of our html page:
[image:]

7. Now that we’ve added these elements to our html page, let’s add some click handlers to our script.js file. We will also use some variable and operators to add text to the paragraph each time the toggle buttons are clicked. Add these lines to script.js:
[image:]
8. Now test your webpage in the browser. Your toggle buttons should slide and fade your paragraphs. Also, each time you click a toggle button, your paragraphs should grow by one word each time.

[bookmark: _Toc364071910]Exercise 3
In this exercise, we will take a look at conditionals, arrays, and loops. We will add values to an array, test those values using a conditional, and take different actions depending on which condition that value meets. We will build from our Exercise 2 project.
1. Let’s get started by adding these lines to the body of your html file:
[image:]

1. Now we will add to our script.js file. Here, we will create a blank Array. Then we create a click handler for the “addToArray” button. This click handler will loop through all of the elements in the array and check if the number is greater than 100. The number will be added to the correct paragraph based on which condition it satisfies. Here is the code for the script.js file. This can be added anywhere in the $(document).ready function:
[image:]
Note: We created the numbersArray outside of the addToArray click function because if it was inside the click function, it would create a new array each time the button is clicked. This would wipe out any previous values we had added to the array.

1. Open your index file and add some values to your array. Try adding values less than and greater than 100.
1. Now let’s add a “Clear” button to reset the array. In your html file, add the following line directly under your “addToArray” button:
[image:]

1. Now, let’s add to our script.js file to give this button the functionality we want:
[image:]
Note: We reset the paragraph text also, so that the old values of the array don’t still populate the text.

1. Now test your html file in a browser. You should be able to add values to the array, test whether they are less than or equal to 100, and clear the array with our new button.

[bookmark: _Toc364071913]Exercise 4
In this exercise, we will create and loop through some objects. We will build off of our Exercise 3 webpage.

1. [image:]Let's start by creating an object and printing it out onto the screen. Add these lines to the body of your index.html file:

1. [image:]Now we'll add to our script.js file. Here we will create an object and print it to the screen when our button is clicked:

1. Test your index.html file in your browser to see if the object is printed to your screen.

1. [image:]Now we will create some more objects and use them to populate some content on our page. Let's add another button and some blank headings to the body of our index.html page:

1. Now create a click handler in our script.js file for the button we just created. We will make 3 different objects and use those objects to give our blank headings some text and color:

[image:]
1. Test your index.html file and make sure everything is working correctly.

[bookmark: _Toc364071917]Exercise 5
In this exercise, we will create our first map using javascript. We will be using ESRI's online tutorials as our guide. If you visit their site, you can copy and paste their code so that you don't make any tiny mistakes trying to type it yourself.

https://developers.arcgis.com/en/javascript/jstutorials/intro_firstmap_amd.html

1. Let's start with a blank HTML template. Start with a template like this:

[image:]
2. To begin working with the ArcGIS API for JavaScript, add the following script and link tags inside the <head> tag. Insert these lines ABOVE your current css and javascript files so that they are loaded before your custom scripts:

[image:]

3. Now we add the script that creates the map, lines 11 through 30 in your file.
[image:]
4. We almost have a working map. Now we just need to add a div tag to our index.html file. This is where our map will go. Add this div to the <body> tag of your html file:

[image:]
5. Go ahead and test your page in a browser to see what you get. You should get a map that doesn't quite take up the whole screen. We will fix that with some css.

6. Let's start with a blank css file. With a blank file, use these styles to style your map:

[image:]
7. Now reload your page in a browser to see if the map takes up the full screen. Congratulations, you should have your first working map using the javascript API.

[bookmark: _Toc364071920]Exercise 6
In this exercise, we will build off of the first map web map we made in Exercise 5. Try to mix two applications together to make a more complex application. This time, however, we will use the Sandbox to see how we can test applications online before development.
1. Visit the sample for Getting started with layers and click on the sandbox “Explore in the Sandbox” button
https://developers.arcgis.com/javascript/latest/sample-code/get-started-layers/index.html

[image:]
2. Now visit the Getting started with popups sample and click its “Explore in the Sandbox” button.
https://developers.arcgis.com/javascript/latest/sample-code/get-started-popup/index.html

3. We want to add the popup functionality from the Popups sample to the Layers sample.
4. Compare the two sets of code and notice both contain a variable named “view”
[image:]

[image:]

This presents an easy mechanism to link the two capabilities.
5. First, we must make sure the Layer example has the necessary parts to enact a popup. This means we must add the Locator tools to the Layer project. In the require block of the Layer example, copy the Locator parts into the Layer example:
[image:]

[image:]

Now we can add the functionality of popups to the Layer example.

6. We need to add the locator layer to the map. In the popup example, lines 48, 49, and 50 contain our locator layer definition.

[image:]

Copy those layers to the Layer Sandbox example. Let’s copy it to just below the “var view” definition in the Layer Sandbox.

7. All the click information happens in the on.click event. That function is contained in lines 71 through 95 of the Getting started with popups example.
[image:]

Copy these lines into the Layers Sandbox somewhere after the “var view” line. Remember scope! Don’t paste it in the middle of a function!

8. [bookmark: _GoBack]How could we go about including additional functionality into our application?

image3.emf


Day 1 – Introduction to Javascript



Who is it for: The person completely new to Javascript and programming



Pre-requisites: Basic HTML and CSS knowledge



What We Will Learn: How to create a basic Javascript program that works in a webpage



Day 2 – Introduction to ArcGIS Javascript API



Who is it for: Anyone who wants to learn the basics of ArcGIS Javascript API



Pre-requisites: A basic knowledge of HTML, CSS, and Javascript



What We Will Learn: How to make a basic interactive map with the ArcGIS Javascript API

3

image48.emf


Events are what they sounds like – things that happen



Common Events



Click(), dblclick(), mouseenter(), mouseleave(), mousedown(), mouseup(), hover(),

focus(), blur()



Full reference of events



Events allow you to specify something happens when the event happens

$(“#p1”).click(function(){

($this).hide();

});



This code says, “When you click on the element with id p1, hide that element



Code word ‘this’ is important, and it refers to the thing that had the event

48

Microsoft_PowerPoint_Slide47.sldx
Jquery: Events

Events are what they sounds like – things that happen

Common Events

Click(), dblclick(), mouseenter(), mouseleave(), mousedown(), mouseup(), hover(), focus(), blur()

Full reference of events

Events allow you to specify something happens when the event happens

$(“#p1”).click(function(){

	($this).hide();

});

This code says, “When you click on the element with id p1, hide that element

Code word ‘this’ is important, and it refers to the thing that had the event

48

image2.png

image3.png

image49.emf


Broadly speaking, in programming we use ‘get’ and ‘set’ functions to access things



In jquery and html, those are



text() – gets or sets text of the element



html() – gets or sets the html of the element



val() – gets or sets the value of a form element



If we wanted to get the text of an HTML element, we would write:

var a1 = $(“p”).text();



If we wanted to set the text of an HTML element, we would pass in the text like this:

$(“p”).text(“This is some sample text”);

49

Microsoft_PowerPoint_Slide48.sldx
Jquery: HTML Interaction

Broadly speaking, in programming we use ‘get’ and ‘set’ functions to access things

In jquery and html, those are

text() – gets or sets text of the element

html() – gets or sets the html of the element

val() – gets or sets the value of a form element

If we wanted to get the text of an HTML element, we would write:

var a1 = $(“p”).text();

If we wanted to set the text of an HTML element, we would pass in the text like this:

$(“p”).text(“This is some sample text”);

49

image2.png

image3.png

image50.emf


You can use Jquery to manipulate the CSS for an element.



Done through addClass() and removeClass() functions. We can toggle classes with toggleClass() method.



Let’s say you have some CSS that makes an element bold and large text

.bigText{font-weight:bold;font-size:xx-large;}



And you have a HTML element that you want to make big when a button is pressed

<button>Make Big!</button>

<div>Gonna make this big!</div>



The code looks like this

$(document).ready(function(){

$(“button”).click(function(){

$(“div”).addClass(“bigText”);

});

});

50

Microsoft_PowerPoint_Slide49.sldx
Jquery: CSS Manipulation

You can use Jquery to manipulate the CSS for an element.

Done through addClass() and removeClass() functions. We can toggle classes with toggleClass() method.

Let’s say you have some CSS that makes an element bold and large text

.bigText{font-weight:bold;font-size:xx-large;}

And you have a HTML element that you want to make big when a button is pressed

<button>Make Big!</button>

<div>Gonna make this big!</div>

The code looks like this

$(document).ready(function(){

	$(“button”).click(function(){

		$(“div”).addClass(“bigText”);

	});

});

50

image2.png

image3.png

JOUERY: €SS MANTPULATION

image51.emf
51

Jquery Tutorials

•

W3C Schools

•

jQuery Site

•

Complete jquery

tutorial

(beware ads everywhere)

Microsoft_PowerPoint_Slide50.sldx
Jquery: There’s much more

51

Jquery Tutorials

W3C Schools

jQuery Site

Complete jquery tutorial

 (beware ads everywhere)

image5.jpeg

image2.png

image3.png

NUCH HORE

ey T

image52.emf
52

Microsoft_PowerPoint_Slide51.sldx
Exercise 2

52

image5.gif

©2000 Randy Glasbergen. ~ww.glasbergen.com

GLASBERGEN

“The handle on your recliner does
not qualify as an exercise machine.”

image2.png

image3.png

EXERCISE 2

Microsoft_PowerPoint_Slide2.sldx
Goals of the Course

Day 1 – Introduction to Javascript

Who is it for: The person completely new to Javascript and programming

Pre-requisites: Basic HTML and CSS knowledge

What We Will Learn: How to create a basic Javascript program that works in a webpage

Day 2 – Introduction to ArcGIS Javascript API

Who is it for: Anyone who wants to learn the basics of ArcGIS Javascript API

Pre-requisites: A basic knowledge of HTML, CSS, and Javascript

What We Will Learn: How to make a basic interactive map with the ArcGIS Javascript API

3

image2.png

image3.png

GORLS OF THE COURSE

image53.emf


Control statements allow us give the

program direction



Variables, constants, arrays, etc are the

‘what’ of a program



Control statements are the ‘how’ of a

program



There are 3 types of control

statements



Conditionals



Loops



Functions

53

Microsoft_PowerPoint_Slide52.sldx
Javascript: Getting Control

Control statements allow us give the program direction

Variables, constants, arrays, etc are the ‘what’ of a program

Control statements are the ‘how’ of a program

There are 3 types of control statements

Conditionals

Loops

Functions

53

image5.jpeg

i / control }

image2.png

image3.png

JAVASCRIPT: GETTING CONTROL

image54.emf


It’s pretty simple - If this is true, then do that, otherwise do this other thing



It allows us to control the logic flow of a program – branching logical critical to programming



Generically

If(condition){

Do this if the condition is true

}else{

Do this if the condition is false

}

We start with the keyword ‘if’, then open parentheses, and then a condition we will evaluate to either true or false, close

parentheses, and then {



The { opens what is called a ‘block’ of code. To close the block, you put a }



We tab code in the block to make it more human readable – the computer doesn’t care



You can put the { and } on their own lines if you like – the traditional way

if(condition)

{

Do this if condition is true

}

else

{

Do this if condition is false

}

54

Microsoft_PowerPoint_Slide53.sldx
Conditionals

It’s pretty simple - If this is true, then do that, otherwise do this other thing

It allows us to control the logic flow of a program – branching logical critical to programming

Generically

If(condition){

	Do this if the condition is true

}else{

	Do this if the condition is false

}

We start with the keyword ‘if’, then open parentheses, and then a condition we will evaluate to either true or false, close parentheses, and then {

The { opens what is called a ‘block’ of code. To close the block, you put a }

We tab code in the block to make it more human readable – the computer doesn’t care

You can put the { and } on their own lines if you like – the traditional way

if(condition)

{

	Do this if condition is true

}

else

{

	Do this if condition is false

}

54

image2.png

image3.png

image55.emf


Conditions evaluate to true/false, and they are the outcome of logical and comparison operators.



Consider this code:

var x = 10;

var y = 5;

var z = x – y;

var a1_STR = “”;

If(z < 6){

a1_STR = “You have $5 or less”;

}else{

at_STR = “You have more than $5”;

}



If we change the condition, we can change the outcome



We can also evaluate if something is the same:

var x = 10;

var y = “10”;

var a1_STR = “”;

If(x == y){

a1_STR = “They are the same”;

}else{

a1_STR = “They are different”;

}

What happens if I change the conditional operator to === ?

You can make complex conditions using logical and comparison operators



To avoid confusion, always, always, ALWAYS use parentheses



If((a > 5)&&(b<10))….

55

Microsoft_PowerPoint_Slide54.sldx
Conditionals: Conditions

Conditions evaluate to true/false, and they are the outcome of logical and comparison operators.

Consider this code:

var x = 10;

var y = 5;

var z = x – y;

var a1_STR = “”;

If(z < 6){

	a1_STR = “You have $5 or less”;

}else{

	at_STR = “You have more than $5”;

}

If we change the condition, we can change the outcome

We can also evaluate if something is the same:

var x = 10;

var y = “10”;

var a1_STR = “”;

If(x == y){

	a1_STR = “They are the same”;

}else{

	a1_STR = “They are different”;

}

What happens if I change the conditional operator to === ?

You can make complex conditions using logical and comparison operators

To avoid confusion, always, always, ALWAYS use parentheses

If((a > 5)&&(b<10))….

55

image2.png

image3.png

CONDITIONALS: CONDITIONS

image56.emf


Sometimes you want to ask a couple of questions and the second question is dependent upon the

answer to the first.



“Are you free tonight?”, if the answer is yes, then “Do you want to go to the movies?”



We use blocks to nest questions

var a1 = 4;

var a2 = 12;

var a3 = “”;

If(a1 > 5){

if(a2 < 15){

a3 = “The price is between $5 and $15”;

}else{

a3 = “The price is greater than $15”;

}

}else{

a3 = “The price is less than $5”;

}

56

Microsoft_PowerPoint_Slide55.sldx
Conditionals: Nesting If Statements

Sometimes you want to ask a couple of questions and the second question is dependent upon the answer to the first.

“Are you free tonight?”, if the answer is yes, then “Do you want to go to the movies?”

We use blocks to nest questions

var a1 = 4;

var a2 = 12;

var a3 = “”;

If(a1 > 5){

	if(a2 < 15){

		a3 = “The price is between $5 and $15”;

	}else{

		a3 = “The price is greater than $15”;

	}

}else{

	a3 = “The price is less than $5”;

}

56

image2.png

image3.png

CONDITIONALS: NESTING IF STATEMENTS

image57.emf


Sometimes you want to ask, “Is it this, or that, or this other thing?”



That’s done with the else if clause



You can string as many else if clauses as you want



Normally the ‘default’ clause is the final ‘else’, although it doesn’t have to be that way

var a1 = “blue”;

var a2 = “”;

If(a1 == “red”){

a2 = “It’s a red book”;

}else if(a1 == “green”){

a2 = “It’s a green book”;

}else if(a1 == “yellow”){

a2 = “It’s a yellow book”;

}else if(a1 == “blue”){

a2 = “It’s a blue book”;

}else{

a2 = “I don’t know the color of the book”;

}

57

Microsoft_PowerPoint_Slide56.sldx
Conditionals: Serial Questions

Sometimes you want to ask, “Is it this, or that, or this other thing?”

That’s done with the else if clause

You can string as many else if clauses as you want

Normally the ‘default’ clause is the final ‘else’, although it doesn’t have to be that way

var a1 = “blue”;

var a2 = “”;

If(a1 == “red”){

	a2 = “It’s a red book”;

}else if(a1 == “green”){

	a2 = “It’s a green book”;

}else if(a1 == “yellow”){

	a2 = “It’s a yellow book”;

}else if(a1 == “blue”){

	a2 = “It’s a blue book”;

}else{

	a2 = “I don’t know the color of the book”;

}

57

image2.png

image3.png

CONDITIONALS: SERIAL QUESTIONS

image4.emf


Codeacademy



JavaScript Track



TONS of great stuff here – longer, more interactive, and better than I can teach in a day



W3C Schools



Javascript Tutorial



Everything you need to develop for and on the web

4

image58.emf


If you have a lot of else if clauses, it can be neater to use a switch statement



The condition must me a single evaluation, normally a variable



The default clause is what you do if it can’t find a match in the list

Switch(condition){

Case value1:

Do stuff

break;

Case value2:

Do stuff

break;

default:

break;

58

Microsoft_PowerPoint_Slide57.sldx
Conditionals: I got a LOT of questions!

If you have a lot of else if clauses, it can be neater to use a switch statement

The condition must me a single evaluation, normally a variable

The default clause is what you do if it can’t find a match in the list

Switch(condition){

Case value1:

Do stuff

break;

Case value2:

Do stuff

break;

default:

break;

58

image2.png

image3.png

CONDITIONALS: T GOT A LOT OF
QESTIONS!

image59.emf
var day = “Sunday”;

var todayType = “”;

switch(day){

case “Monday”:

todayType = “Weekday”;

break;

case “Tuesday”:

todayType = “Weekday”;

break;

case “Wednesday”:

todayType = “Weekday”;

break;

case “Thursday”:

todayType = “Weekday”;

break;

case “Friday”:

todayType = “Weekday”;

break;

case “Saturday”:

todayType = “Weekend”;

break;

case “Sunday”:

todayType = “Weekend”;

break;

}

If(todayType == “Weekend”){

//Party!

}else{

//Get more coffee…. STAT!

}

59

Microsoft_PowerPoint_Slide58.sldx
Conditionals: Switch

var day = “Sunday”;

var todayType = “”;

switch(day){

	case “Monday”:

		todayType = “Weekday”;

		break;

	case “Tuesday”:

		todayType = “Weekday”;

		break;

	case “Wednesday”:

		todayType = “Weekday”;

		break;

	case “Thursday”:

		todayType = “Weekday”;

		break;

	case “Friday”:

		todayType = “Weekday”;

		break;

	case “Saturday”:

		todayType = “Weekend”;

		break;

	case “Sunday”:

		todayType = “Weekend”;

		break;

}

If(todayType == “Weekend”){

	//Party!

}else{

	//Get more coffee…. STAT!

}

59

image2.png

image3.png

CONDITIONALS: SWITCH

image60.emf


Another control statement to control the logic flow of

the program



It’s a way to do things multiple times until some sort

of exit clause is met



Works on a block of code, so it can hold multiple

statements



Javascript has several loops that do different things



While loop



Do…. While loop



For loop (most important)



For/In loop

60

Microsoft_PowerPoint_Slide59.sldx
Loops

Another control statement to control the logic flow of the program

It’s a way to do things multiple times until some sort of exit clause is met

Works on a block of code, so it can hold multiple statements

Javascript has several loops that do different things

While loop

Do…. While loop

For loop (most important)

For/In loop

60

image5.jpeg

image2.png

image3.png

image61.emf


While something is true, do this over and over.

While(condition){

Code to be executed

}



Have to be careful that at SOME point, the condition is false, otherwise the loop will go forever.



Takes a lot of care to do a while loop



Common error – forgetting to increment a counter



Example

var i = 0;

while(i < 5){

alert(“i = “+i);

}



THIS IS BAD CODE! I ALWAYS equals 0!

var i = 0;

while(i < 5){

alert(“i = “+i);

i++;

}

61

Microsoft_PowerPoint_Slide60.sldx
While Loop

While something is true, do this over and over.

While(condition){

Code to be executed

}

Have to be careful that at SOME point, the condition is false, otherwise the loop will go forever.

Takes a lot of care to do a while loop

Common error – forgetting to increment a counter

Example

var i = 0;

while(i < 5){

	alert(“i = “+i);

}

THIS IS BAD CODE! I ALWAYS equals 0!

var i = 0;

while(i < 5){

	alert(“i = “+i);

	i++;

}

61

image2.png

image3.png

image62.emf


Alert is a command to make a popup box show up in a browser.



It’s a special function to show a string – we use the + operator to add the value of the variable to

the output string.



Can be useful for debugging if the Developer Tools don’t do it for you



It’s written like:

alert(“this is an alert box!”);



There are two special operators, ++ and --, which are useful for loops in particular



We often want to say, “Add one to the variable”, which we would have to write:

var x;

x = x +1;



Programmers are lazy… so they invented an easier way

var x;

x++;



The -- operator subtracts one

62

Microsoft_PowerPoint_Slide61.sldx
Wait… what’s the ‘alert’ and that ++ thing?

Alert is a command to make a popup box show up in a browser.

It’s a special function to show a string – we use the + operator to add the value of the variable to the output string.

Can be useful for debugging if the Developer Tools don’t do it for you

It’s written like:

alert(“this is an alert box!”);

There are two special operators, ++ and --, which are useful for loops in particular

We often want to say, “Add one to the variable”, which we would have to write:

var x;

x = x +1;

Programmers are lazy… so they invented an easier way

var x;

x++;

The -- operator subtracts one

62

image2.png

image3.png

WAIT... WHATS THE ‘BLERT AND THAT

Microsoft_PowerPoint_Slide3.sldx
Better Places to Learn Javascript

Codeacademy

JavaScript Track

TONS of great stuff here – longer, more interactive, and better than I can teach in a day

W3C Schools

Javascript Tutorial

Everything you need to develop for and on the web

4

image2.png

image3.png

BETTIR PLACES T0 LEARN JAVASCRIPT

image63.emf


Developer tools allow us to see

what’s going on behind the

scenes.



Open in Chrome using Menu

under “More Tools”. Also F12

opens



Console the most important for

Javascript



Use: console.log(“Stuff to say”)

to have information show up in

the log.



To show value of a variable:



Console.log(“i = “+i);



Demo

63

Microsoft_PowerPoint_Slide62.sldx
Debugger

Developer tools allow us to see what’s going on behind the scenes.

Open in Chrome using Menu under “More Tools”. Also F12 opens

Console the most important for Javascript

Use: console.log(“Stuff to say”) to have information show up in the log.

To show value of a variable:

Console.log(“i = “+i);

Demo

63

image5.png

© Developer Tools - hitp//serviceswgis v ed/arcgis/res/services

[R (] | Eements Console Sources Network Performance

<htnl>
> <head>.</head>
¥ <body>

v <table width-"100

</tbody>
</tavler

> ctable width-"1ee%
> ctables./tabler
<n2>Folder: /</h2>

</body>
</ntn>

him_body _tableuserable toocty v [[ERERRN

Memory Application

Security

Audits

Styles | Computed Event Listeners

Filter
element.style { =
¥
titlecell { mein.css:76
PADDING-RIGHT: 0px;
PADDING-LEFT: Bpx;
FONT-SIZE: 1.0em;

FONT-WEIGHT: bold;
PADDING-BOTTON: 5pic;
MARGIN: @px Bpx 3px;
PADDING-TOP: 3px;

™

user agent stylesheet

table-cell;
vertical-align: inherit;

¥
Inherited from zable.userTable!
.userTable {

¥

table { user agent stylesheet
wnite-space: normal;
Line-heignt: normal;
fontweigntinormals
font-style: normal;
color: -internal-quirk-inherit;

text-align: start; °

Console | What's New

© wp v e

Info v

x

image2.png

image3.png

image64.emf


Nearly identical to the while loop with one minor change



The condition happens after the loop runs once



In a while loop, the loop sometimes doesn’t run even once because the condition is false



It has the same issues and warnings as a while loop – pay attention to your conditions!

You have to have an escape plan!



Syntax for a do loop

var j = 0;

do{

alert(“j = “+j);

j++;

}while(j < 3);

64

Microsoft_PowerPoint_Slide63.sldx
Do Loop

Nearly identical to the while loop with one minor change

The condition happens after the loop runs once

In a while loop, the loop sometimes doesn’t run even once because the condition is false

It has the same issues and warnings as a while loop – pay attention to your conditions! You have to have an escape plan!

Syntax for a do loop

var j = 0;

do{

	alert(“j = “+j);

	j++;

}while(j < 3);

64

image2.png

image3.png

image65.emf


Stolen wholesale from C/C++



For loops allow you to combine a lot of statements into one statement



Most loops have a variable that’s created and initialized



Most have an exit condition



Most have something that should happen if the exit isn’t reached

for(statement1;statement2;statment3){

//do stuff

}

So our while examples would look like:

for(var i=0;i<5;i++){

alert(“i now equals “+i);

}



Some quick notes



Statement 1 provides an initialization variable and value – that’s optional and can happen outside the loop



Statement 2 provides an exit clause – it’s optional

provided

you give a break clause



Statement 3 provides an increment clause – it’s optional. You can also increment using any value you want, not

just 1.

i=i+10

is valid

65

Microsoft_PowerPoint_Slide64.sldx
For loops

Stolen wholesale from C/C++

For loops allow you to combine a lot of statements into one statement

Most loops have a variable that’s created and initialized

Most have an exit condition

Most have something that should happen if the exit isn’t reached

for(statement1;statement2;statment3){

	//do stuff

}

So our while examples would look like:

for(var i=0;i<5;i++){

	alert(“i now equals “+i);

}

Some quick notes

Statement 1 provides an initialization variable and value – that’s optional and can happen outside the loop

Statement 2 provides an exit clause – it’s optional provided you give a break clause

Statement 3 provides an increment clause – it’s optional. You can also increment using any value you want, not just 1. i=i+10 is valid

65

image2.png

image3.png

image66.emf


It is extremely common to use loops and arrays together



You often want to do something to every value in an array



What we do is use the numeric indexes of an Array and combine that with the

increments of loops to do actions on each element in the array



Let’s say you have an array of hourly wages and you want to give everyone a $.50/hour wage

bump

var wages = [10.25,9.00,11.50,10.00];

var newWages = [];

for(var i=0;i<3;i++){

newWages[i] = wages[i] + .50;

}



At the end of the loop, newWages will be [10.75,9.50,12.00,10.50], i will be 4, and

wages will be unchanged.



Remember that arrays start at indexes of 0. We have 4 elements in our array, so we only

count to 3… 0,1,2,3.

66

Microsoft_PowerPoint_Slide65.sldx
For Loops and Arrays

It is extremely common to use loops and arrays together

You often want to do something to every value in an array

What we do is use the numeric indexes of an Array and combine that with the increments of loops to do actions on each element in the array

Let’s say you have an array of hourly wages and you want to give everyone a $.50/hour wage bump

var wages = [10.25,9.00,11.50,10.00];

var newWages = [];

for(var i=0;i<3;i++){

	newWages[i] = wages[i] + .50;

}

At the end of the loop, newWages will be [10.75,9.50,12.00,10.50], i will be 4, and wages will be unchanged.

Remember that arrays start at indexes of 0. We have 4 elements in our array, so we only count to 3… 0,1,2,3.

66

image2.png

image3.png

TOR L00PS KND KRRAYS

image67.emf


We can do the same task without having 2 arrays



Statements are evaluated from the right hand side of the equals, then that is put into the

variable on the left hand side of the equals

var wages = [10.25,9.00,11.50,10.00];

for(var i=0;i<3;i++){

wages[i] = wages[i] + .50;

}



wages will now equal [10.75,9.50,12.00,10.50]. i will equal 3;



Why? Because it reads the current value of wages, adds the value to it, then puts it into the

current place of wages.

67

Microsoft_PowerPoint_Slide66.sldx
For Loops and Arrays

We can do the same task without having 2 arrays

Statements are evaluated from the right hand side of the equals, then that is put into the variable on the left hand side of the equals

var wages = [10.25,9.00,11.50,10.00];

for(var i=0;i<3;i++){

	wages[i] = wages[i] + .50;

}

wages will now equal [10.75,9.50,12.00,10.50]. i will equal 3;

Why? Because it reads the current value of wages, adds the value to it, then puts it into the current place of wages.

67

image2.png

image3.png

TOR 100PS AND ARRAYS

image5.emf
5

image68.emf


Used for Objects and Associative Arrays



If our index isn’t a number but a string, we can’t add one to it… that doesn’t make sense



What to say – “For each element in this array, do something”



Example

var person={fname:”John”,lname:”Smith”,age:25};

for (x in person){

console.log(x.fname + “ “ +x[lname]+ “ is “+x.age” years

old”);

}

68

Microsoft_PowerPoint_Slide67.sldx
For/In Array

Used for Objects and Associative Arrays

If our index isn’t a number but a string, we can’t add one to it… that doesn’t make sense

What to say – “For each element in this array, do something”

Example

var person={fname:”John”,lname:”Smith”,age:25};

for (x in person){

	console.log(x.fname + “ “ +x[lname]+ “ is “+x.age” years

	old”);

}

68

image2.png

image3.png

image69.emf


Don’t get up! – they’re real things in Javascript



Break clause jumps you out of a block of code, like a loop (or the switch statement, if you’ll recall)



Simple keyword of

break;

stops the code right there

for (var i=0;i<5;i++){

if(i == 2)break;

alert(i);

}



This will alert the numbers 0 and 1, but not 2 because the

break;

tells it to stop the code right there

and move to the end of the loop



Continue tells the block of code to skip a step at that point



Similar to break, the simple keyword of

continue;

skips the loop right there

for(var i=0;i<35;i=i+5){

if(i == 25)continue;

alert(i);

}



This will alert 0,5,10,15,20,30

69

Microsoft_PowerPoint_Slide68.sldx
Break and Continue

Don’t get up! – they’re real things in Javascript

Break clause jumps you out of a block of code, like a loop (or the switch statement, if you’ll recall)

Simple keyword of break; stops the code right there

for (var i=0;i<5;i++){

	if(i == 2)break;

	alert(i);

}

This will alert the numbers 0 and 1, but not 2 because the break; tells it to stop the code right there and move to the end of the loop

Continue tells the block of code to skip a step at that point

Similar to break, the simple keyword of continue; skips the loop right there

for(var i=0;i<35;i=i+5){

	if(i == 25)continue;

	alert(i);

}

This will alert 0,5,10,15,20,30

69

image2.png

image3.png

'BREAK AND CONTINUE

image70.emf


It is a block of code that gets ‘called’



It does a group of actions



It can take in arguments



It can return values



Functions are the basis for compartmentalizing code



It’s the basic “Lego” upon which we tend to build software



When we do the same thing over and over, use a function



Makes code more readable, more organized, and more maintainable



General form

function functionName(argument1, argument2){

//Block of code here

}

70

Microsoft_PowerPoint_Slide69.sldx
Functions

It is a block of code that gets ‘called’

It does a group of actions

It can take in arguments

It can return values

Functions are the basis for compartmentalizing code

It’s the basic “Lego” upon which we tend to build software

When we do the same thing over and over, use a function

Makes code more readable, more organized, and more maintainable

General form

function functionName(argument1, argument2){

	//Block of code here

}

70

image2.png

image3.png

image71.emf


Look at your code and see if there is any task you need to do more than once



Try to put in a function



We can include all the things we learned thus far within a function (conditions, loops, arrays, etc)



We can have as many arguments as wanted and they can be called anything you like



The arguments become variables with data in them

function myFunc(var1, var2, var3){

alert(“my second variable is “+var2);

}

We can also return values using the keyword

return

function multip(a,b){

return (a*b);

}

We would call that function like this:

var num1 = 5;

var num2 = 27;

var theResult = multip(num1,num2);

alert(“When you multiply “+num1+” and “+num2+” you get “+theResult);

71

Microsoft_PowerPoint_Slide70.sldx
Functions: How to Use Them

Look at your code and see if there is any task you need to do more than once

Try to put in a function

We can include all the things we learned thus far within a function (conditions, loops, arrays, etc)

We can have as many arguments as wanted and they can be called anything you like

The arguments become variables with data in them

function myFunc(var1, var2, var3){

	alert(“my second variable is “+var2);

}

We can also return values using the keyword return

function multip(a,b){

	return (a*b);

}

We would call that function like this:

var num1 = 5;

var num2 = 27;

var theResult = multip(num1,num2);

alert(“When you multiply “+num1+” and “+num2+” you get “+theResult);

71

image2.png

image3.png

FUNCTIONS: KOW T0 USE THEM

image72.emf


The code in functions can be as extensive as you like



You can even call other functions inside the function



In some contexts, we call functions “methods”



They are basically interchangeable



Important when we get to Objects



The decision to return a value or not is completely up to the needs of the program

72

Microsoft_PowerPoint_Slide71.sldx
Functions

The code in functions can be as extensive as you like

You can even call other functions inside the function

In some contexts, we call functions “methods”

They are basically interchangeable

Important when we get to Objects

The decision to return a value or not is completely up to the needs of the program

72

image2.png

image3.png

Microsoft_PowerPoint_Slide4.sldx
Programming Can Be Scary

5

5

image5.png

image6.png

=
1]

class Classi <

/07 <sunmary>
777 The main entry point for the application.
777 </sunmary>

STAThread]

Static void MainCstring[l args) <

2/ Logon

BlULicenseManager licenseManager = ncu BlULicenseManager();

4/ put your valid license here
String networkLicense =
string password;

passuord

licenseManager.Logon¢ networkLicense, password)3

Console.riteLine< “Logged on."” >

string fullName

BTULibrary library = ncu BlULibrary<;

7/ Get properties

PUSPropertyBag bag = library.GetMediaByFullNane(fullName >3

4/ Print properties to the console

Console.UriteLineC “"Properties of (@3, fullName >3

foreach< PUSProperty prop in bag.Properties)
Console.UriteLineC

>

#/ Put_the PUSPropertyBag into a move friendly collection class.

<

\Docunents and Settings\rkuo.SNAPSTREAM\My Docunents\My Uideos\South Park-(Freak

prop.Name, prop.Ualue >3

77 1t’s a good idea for you to write a friendlier wrapper class that

77 would allow you to add and remove properties and cast hack to

77 the PUSPropertyBag type on the fly.

Arraylist aProperties = nou Arraylist< bag.Properties)3

#/ Change the “EpisodeDescription” property
Forcach< PUSProperty prop in aProperties > <
£ C prop.Nane pisodeDescription” > <
prop_Ualue

>

/7 Create a new PUSPropertyBag with the edited property

PUSPropertyBag newBag = ncu PUSPropertyBag();

"The hoys compete to appear on a talk shou.

(Edited by Beyond TU Framework>

neuBag.Properties = CPUSPropertyl DaProperties.Torray(typcof (PUSProperty) O3

/7 This method will edit the recording
library.EditMedia< fullName, neuBag >3

/7 Print properties to the console and verify the change
Console.UriteLineC “Edited properties of ", fullName >;

forcach< PUSProperty prop in bag.Properties >

<

Console.UriteLineC “"Property: (8>, <1>". prop.Name. prop.Ualue >;

>

4/ Pause so you can see the output, hit enter to continue

Console.UriteLine¢ “Press any key fo exit
Console ReadLine(>;
return;

>

Strike>-2004-88-17-0.npg";

image7.png

image2.png

image3.png

PROGRAMMING CAN BE SCARY

82

image73.emf


This is complicated and will make your head bang against a wall



There are two types of scope



Global – applies to the whole program



Local – applies to the inside of a block of code, almost always a function as Javascriptdoesn’t do block scoping



Examples:

var a=5; //This is a global variable

Function one(){

alert(a); //This can access a because a is global

}

Function two(a){

alert(a); //a is local to the function two because it is passed in

}

Function three(){

var a = 18;

alert(a); //it shows the local variable a, not the global



This only scratches the surface of scope in Javascript – understanding scope is key to good Javascript programming

73

Microsoft_PowerPoint_Slide72.sldx
Scope

This is complicated and will make your head bang against a wall

There are two types of scope

Global – applies to the whole program

Local – applies to the inside of a block of code, almost always a function as Javascript doesn’t do block scoping

Examples:

var a=5; //This is a global variable

Function one(){

	alert(a);		//This can access a because a is global

}

Function two(a){

	alert(a);		//a is local to the function two because it is passed in

}

Function three(){

	var a = 18;

	alert(a);		//it shows the local variable a, not the global

This only scratches the surface of scope in Javascript – understanding scope is key to good Javascript programming

73

image2.png

image3.png

image74.emf
74

Microsoft_PowerPoint_Slide73.sldx
Exercise 3

74

image5.gif

Copyright 2005 by Randy Glasbergen.
www.glasbergen.com

GIASBERGEN —

“Pretend youw're starring in a reality show about a kid who can make
his dreams come true if he works hard and gets good grades.”

image2.png

image3.png

image75.emf


Javascript relies heavily upon objects



But it isn’t object orientated



More object friendly.



Sometimes it makes sense to bundle a things

information and functions into one box



The box contains the information it knows



The box contains how to manipulate the

information it knows



Conceptually, it’s like an object in real life

75

Microsoft_PowerPoint_Slide74.sldx
Objects

Javascript relies heavily upon objects

But it isn’t object orientated

More object friendly.

Sometimes it makes sense to bundle a things information and functions into one box

The box contains the information it knows

The box contains how to manipulate the information it knows

Conceptually, it’s like an object in real life

75

image5.jpeg

Ml

ap,pears

image2.png

image3.png

image76.emf


Objects have two basic parts



properties (or attributes)



functions (or methods)



Properties are what they have, methods are what they can do



We bundle them into one thing – an object – and can pass them around and

manipulate them as needed



Pretty much everything in Javascript is an object



Some built in objects – arrays, strings, dates



Turns out associative arrays are actually objects



Most important skill to master in Javascript

76

Microsoft_PowerPoint_Slide75.sldx
Objects

Objects have two basic parts

properties (or attributes)

functions (or methods)

Properties are what they have, methods are what they can do

We bundle them into one thing – an object – and can pass them around and manipulate them as needed

Pretty much everything in Javascript is an object

Some built in objects – arrays, strings, dates

Turns out associative arrays are actually objects

Most important skill to master in Javascript

76

image2.png

image3.png

image77.emf


Advanced bit here for the programming nerds



Object Orientated Programming has certain characteristics



Encapsulation



Polymorphism



Abstraction



Javascript doesn’t really have any of these



No way to indicate public/private attributes or methods



You can inherent from only one object



There are no class prototypes



ECMAScript 6 (or 2015) is More OO-ie than not



ECMAScript Compatiability



Can use compilers like Babel to make ECMAScript 6 work with older browsers



Perhaps the more important question – Do I even care?



Javascript isn’t technically a OO language, but it acts really similar to one

77

Microsoft_PowerPoint_Slide76.sldx
Javascript is Not Object Orientated…Or Is It?

Advanced bit here for the programming nerds

Object Orientated Programming has certain characteristics

Encapsulation

Polymorphism

Abstraction

Javascript doesn’t really have any of these

No way to indicate public/private attributes or methods

You can inherent from only one object

There are no class prototypes

ECMAScript 6 (or 2015) is More OO-ie than not

ECMAScript Compatiability

Can use compilers like Babel to make ECMAScript 6 work with older browsers

Perhaps the more important question – Do I even care?

Javascript isn’t technically a OO language, but it acts really similar to one

77

image2.png

image3.png

JAVASCRIPT IS KOT OBJECT
ORIENTATED...0R IS IT?

image6.emf
6

Don’t Panic!!

Everything Starts

Somewhere

image78.emf


Objects look an awful lot like variables in Javascript

var myObj = new Object();



This creates a new object that is essentially blank



We use either ‘dot notation’ or ‘bracket notation’ to assign properties to objects

myObj.fname = “Jane”;

myObj.lname = “Doe”;

Or

myObj[fname] = “Jane”;

myObj[lname] = “Doe”;



What does the second approach remind you?



We can use either approach – we’ll mostly use the ‘dot notation’ approach

78

Microsoft_PowerPoint_Slide77.sldx
Objects: Getting Started

Objects look an awful lot like variables in Javascript

var myObj = new Object();

This creates a new object that is essentially blank

We use either ‘dot notation’ or ‘bracket notation’ to assign properties to objects

myObj.fname = “Jane”;

myObj.lname = “Doe”;

	Or

myObj[fname] = “Jane”;

myObj[lname] = “Doe”;

What does the second approach remind you?

We can use either approach – we’ll mostly use the ‘dot notation’ approach

78

image2.png

image3.png

OBJECTS: GETTING STARTED

image79.emf


You can use bracket notation on declaration to initialize object properties

var Car = {make:”Ford”,

model:”Fusion”,

year:”2010”,

miles:2078};



Constructors



Special functions that are called when you insatiate (create) an object



In Javascript, they’re normally empty and don’t do anything



However, you can create a constructor by making an object using a function and keyword this



Sometimes you want the value of an attribute to be dependantupon the value of another attribute



Say you wanted a variable called ‘category’ for myCarand that’s got a value of ‘domestic’ or ‘foreign’

function Car(make, model, year, miles,type){

this.make = make;

this.model = model;

this.year = year;

this.miles = miles;

if((make == “Ford”) || (make == “GM”) || (make == “Chrysler”)){

this.type = “domestic”;

}else{

this.type = “foreign”;

}

}

79

Microsoft_PowerPoint_Slide78.sldx
Objects: Initializing Objects

You can use bracket notation on declaration to initialize object properties

var Car = {make:”Ford”,

	model:”Fusion”,

	year:”2010”,

	miles:2078};

Constructors

Special functions that are called when you insatiate (create) an object

In Javascript, they’re normally empty and don’t do anything

However, you can create a constructor by making an object using a function and keyword this

Sometimes you want the value of an attribute to be dependant upon the value of another attribute

Say you wanted a variable called ‘category’ for myCar and that’s got a value of ‘domestic’ or ‘foreign’

function Car(make, model, year, miles,type){

	this.make = make;

	this.model = model;

	this.year = year;

	this.miles = miles;

	if((make == “Ford”) || (make == “GM”) || (make == “Chrysler”)){

		this.type = “domestic”;

	}else{

		this.type = “foreign”;

	}

}

79

image2.png

image3.png

OBJECTS: INITIALIZING OBJECTS

image80.emf


From our last example, object creation is done with a var keyword and the keyword

new

var myCar = new Car(“Ford”, “F250”, “2001”, “120000”);



You can create any number of Car objects by just calling it multiple times

var dadCar = new Car(“Ford”, “Taurus”, “2011”, “25000”);

var steveCar = new Car(“Toyota”, “Sienna”, “2010”, “30000);

80

Microsoft_PowerPoint_Slide79.sldx
Creating an Object

From our last example, object creation is done with a var keyword and the keyword new

var myCar = new Car(“Ford”, “F250”, “2001”, “120000”);

You can create any number of Car objects by just calling it multiple times

var dadCar = new Car(“Ford”, “Taurus”, “2011”, “25000”);

var steveCar = new Car(“Toyota”, “Sienna”, “2010”, “30000);

80

image2.png

image3.png

CRERTING AN OBECT

image81.emf


Objects can contain properties that are themselves objects



Let’s extend our Car object example

function Car(make,model,year,miles,owner){

this.make = make;

this.model = model;

this.year = year;

this.miles = miles;

this.owner = owner;

}

The property ‘owner’ can itself be an object, such as this:

Function Person(name,sex,height){

this.name = name;

this.sex = sex;

this.height = height;

}

We would create the Person and the Car like this:

var Frank =new Person(“Frank”,”M”,1782);

Var FrankCar = new Car(“Ford”,”F250”,”2001”,120000,Frank);

81

Microsoft_PowerPoint_Slide80.sldx
Objects With Objects

Objects can contain properties that are themselves objects

Let’s extend our Car object example

function Car(make,model,year,miles,owner){

	this.make = make;

	this.model = model;

	this.year = year;

	this.miles = miles;

	this.owner = owner;

}

The property ‘owner’ can itself be an object, such as this:

Function Person(name,sex,height){

	this.name = name;

	this.sex = sex;

	this.height = height;

}

We would create the Person and the Car like this:

var Frank =new Person(“Frank”,”M”,1782);

Var FrankCar = new Car(“Ford”,”F250”,”2001”,120000,Frank);

81

image2.png

image3.png

image82.emf


You can mix access methods from dot notation to bracket notation



Important for loops



For/in loops really built for objects



In English, they’re really saying, “For each thing in this object, do this stuff”

var myCar = {make:”Honda”,model:”Civic”,year:2005};

for (x in myCar){

txt = txt + myCar[x];

}

82

Microsoft_PowerPoint_Slide81.sldx
Objects and Loops

You can mix access methods from dot notation to bracket notation

Important for loops

For/in loops really built for objects

In English, they’re really saying, “For each thing in this object, do this stuff”

var myCar = {make:”Honda”,model:”Civic”,year:2005};

for (x in myCar){

	txt = txt + myCar[x];

}

82

image2.png

image3.png

OBJECTS AND LOOPS

Microsoft_PowerPoint_Slide5.sldx

6

Don’t Panic!!

Everything Starts

Somewhere

image5.png

image6.png

image2.png

image3.png

Everything Starts
Somewhere

Don't Panic!

| 2022

image83.emf


We can use dot notation to access methods of objects

var lname = “lafone”;

lname.toUpperCase();



This will result in

lname

having the value

LAFONE



Lots of objects have their own methods predefined



String – Properties and Methods



Dates – Properties and Methods



Arrays – Properties and Methods

83

Microsoft_PowerPoint_Slide82.sldx
Object Methods

We can use dot notation to access methods of objects

var lname = “lafone”;

lname.toUpperCase();

This will result in lname having the value LAFONE

Lots of objects have their own methods predefined

String – Properties and Methods

Dates – Properties and Methods

Arrays – Properties and Methods

83

image2.png

image3.png

OBJECT NETHODS

image84.emf


Methods act upon attributes



We can create custom methods to do actions within an object



It looks like a function because it is a function



It happens inside the object block of code – therefore scope is local to object

function Car(make,model,year,miles,owner){

this.make = make;

this.model = model;

this.year = year;

this.miles = miles;

this.owner = owner;

function changeOwner(newOwner){

this.owner = newOwner;

}

function makeOlder(){

this.year++;

}

}

84

Microsoft_PowerPoint_Slide83.sldx
Making Your Own Methods

Methods act upon attributes

We can create custom methods to do actions within an object

It looks like a function because it is a function

It happens inside the object block of code – therefore scope is local to object

function Car(make,model,year,miles,owner){

	this.make = make;

	this.model = model;

	this.year = year;

	this.miles = miles;

	this.owner = owner;

	function changeOwner(newOwner){

		this.owner = newOwner;

	}

	function makeOlder(){

		this.year++;

	}

}

84

image2.png

image3.png

'MAKING YOUR OWN METHODS

image85.emf
var oldOwner = new Person(“James”,”M”,37);

var myCar = new Car(“Ford”,”Focus”,2012,14000,oldOwner);

var newOwner = new Person(“Jane”,”F”,25);

myCar.changeOwner(newOwner);

myCar.makeOlder();



Notice we changed the year from a string to a year – dynamically typed Javascript

doesn’t care



We can name our methods anything we wish



Should adopt some sort of standard so you know what’s a function



We used Camel Case like our variables… we know it’s a function because of the parentheses

after the name



Methods can have zero arguments

85

Microsoft_PowerPoint_Slide84.sldx
Calling Custom Methods

var oldOwner = new Person(“James”,”M”,37);

var myCar = new Car(“Ford”,”Focus”,2012,14000,oldOwner);

var newOwner = new Person(“Jane”,”F”,25);

myCar.changeOwner(newOwner);

myCar.makeOlder();

Notice we changed the year from a string to a year – dynamically typed Javascript doesn’t care

We can name our methods anything we wish

Should adopt some sort of standard so you know what’s a function

We used Camel Case like our variables… we know it’s a function because of the parentheses after the name

Methods can have zero arguments

85

image2.png

image3.png

CALLING CUSTOM NETHODS

image86.emf


API stands for Application Programming Interface



Think of it as a menu of the things a system can do



Different companies and organizations publish APIs as a means of getting at their

services and information



Provide the basic building blocks from which rich applications can be built



Examples



Google Maps Javascript API



Jquery API Documentation

86

Microsoft_PowerPoint_Slide85.sldx
APIs

API stands for Application Programming Interface

Think of it as a menu of the things a system can do

Different companies and organizations publish APIs as a means of getting at their services and information

Provide the basic building blocks from which rich applications can be built

Examples

Google Maps Javascript API

Jquery API Documentation

86

image2.png

image3.png

image87.emf


APIs are really nothing more than a menu list of Objects with their attributes and

their methods



They detail what you need to “pass” to the arguments of methods to get the results

you seek



Includes details concerning how the methods and attributes work



Usually (but not always) includes an example



Here’s where we steal liberally – Remember, Programmers are thieves!



Examples:



Jquery .click documentation



Jquery .hide documentation

87

Microsoft_PowerPoint_Slide86.sldx
How to Read APIs

APIs are really nothing more than a menu list of Objects with their attributes and their methods

They detail what you need to “pass” to the arguments of methods to get the results you seek

Includes details concerning how the methods and attributes work

Usually (but not always) includes an example

Here’s where we steal liberally – Remember, Programmers are thieves!

Examples:

Jquery .click documentation

Jquery .hide documentation

87

image2.png

image3.png

image7.emf
7

1. Programmers are lazy

1. A normal person gets handed a job and gets at it.

A programmer thinks, “I wonder if there is a way I

can get the computer to do this?”

2. Programmers and thieves

1. Never create what you can take or take and

modify

3. No, really, Programmers are REALLY lazy

• It takes a certain type of person to think you can

shorten a sentence like “Take these two numbers

and add them together, then give me the result.”

(69 characters)

• In programmer, that’s “function add(int a,int

b){return (a+b)}” (40 characters)

• Code is often just a method of reducing typing

4. Programmers like challenges like puzzles

• How many things can I make out of a handful of

building blocks? That’s the essence of every

language

image88.emf
88

Microsoft_PowerPoint_Slide87.sldx
Exercise 4

88

image5.gif

THIS MORNING TOMORROW
I SPENT AN HOUR I INTEND TO
ON THE BIKE. START PEDALING-,

image2.png

image3.png

image89.emf


Interactive Maps are Maps



Maps have an audience, a function, and a purpose



Fundamentals apply even if they’re changed



Just because it is capable of doing something does not mean

it is a good idea



Data



Data limitations don’t change because it’s a snazzy interface



Cloud based data becoming the norm



Responsive Design



Today’s reality is that we live on a lot of devices with different

sizes and abilities



Responsive design effectively says create the product once,

but make it respond to the device on which it is running



Remember the wise words of Vinnie Barbarino (if you

know who that is)



Answer these questions



Who? What? Where? How?

89

Microsoft_PowerPoint_Slide88.sldx
Interactive Maps

Interactive Maps are Maps

Maps have an audience, a function, and a purpose

Fundamentals apply even if they’re changed

Just because it is capable of doing something does not mean it is a good idea

Data

Data limitations don’t change because it’s a snazzy interface

Cloud based data becoming the norm

Responsive Design

Today’s reality is that we live on a lot of devices with different sizes and abilities

Responsive design effectively says create the product once, but make it respond to the device on which it is running

Remember the wise words of Vinnie Barbarino (if you know who that is)

Answer these questions

Who? What? Where? How?

89

image5.jpeg

image2.png

image3.png

image90.emf
90

• ArcGIS API for Javascript

• Used to make interactive web maps

• Works in conjunction with a geographic

data sources

• Arc Server Services

• KML

• ArcGIS Online

• CSV

• Free to use – not open source!

• Quick procedural note – today is 100%

stolen by me from ESRI

• Think of us as a tour guide through

ESRI’s Javascript site

• (Programmers are Theives)

Microsoft_PowerPoint_Slide89.sldx
ESRI’s ArcGIS API for Javascript

90

ArcGIS API for Javascript

Used to make interactive web maps

Works in conjunction with a geographic data sources

Arc Server Services

KML

ArcGIS Online

CSV

Free to use – not open source!

Quick procedural note – today is 100% stolen by me from ESRI

Think of us as a tour guide through ESRI’s Javascript site

(Programmers are Theives)

image5.png

ArcGlIS for Developers € Dashboard + w GetStarted Documentation Pricing Support Q

ArcGIS Web APl / JavaScript API / 4.4

ArcGIS API for JavaScript

Guide = APIReference = Sample Code = [& Forum

Build 3D web a pps ! Need to build a full-featured 2D web app with

capabilities such as editing and support for all
The 4.x series of the ArcGIS API for JavaScript is Esri's next-generation JavaScript API that integrates 2D and 3D into a existing layer types?

single, easy-to-use, powerful APL. Version 4.4 lets you build full-featured 3D applications powered by web scenes that can
include rich information layers such as terrain, basemaps, imagery, features, integrated mesh layers, and 3D objects.

/1 Reference the Javascript APT from our CON and you are ready to get started:
<link rel- href= >

<script src= ></scripts

Getthe APl | Releasenotes | FAQ | System requirements | View samples

image2.png

image3.png

ESRIS ARCGIS API FOR [RVESCRIPT

image91.emf


How to help ‘jump start’ your application – Sample Code



Pretty much guaranteed no one of these will do everything you want to do



API Reference



Like other API references



Tells you what’s capable



Invaluable when you’re developing



Forum



Everyone started somewhere – there are no dumb questions!



There are many man hours of expertise in the Forum



The developers and maintainers of the API read them Every. Single. Day.



Sometimes your issues aren’t just you – there are legitimate bugs (This is an Arc product

after all)

91

Microsoft_PowerPoint_Slide90.sldx
Features of the Site

How to help ‘jump start’ your application – Sample Code

Pretty much guaranteed no one of these will do everything you want to do

API Reference

Like other API references

Tells you what’s capable

Invaluable when you’re developing

Forum

Everyone started somewhere – there are no dumb questions!

There are many man hours of expertise in the Forum

The developers and maintainers of the API read them Every. Single. Day.

Sometimes your issues aren’t just you – there are legitimate bugs (This is an Arc product after all)

91

image2.png

image3.png

'FETURES OF THE SITE

image92.emf


Current Version: 4.4



New releases come quarterly or biannually, but not predicable



Should always include the version number in the link because of this



You can still use 3.x version if you like. Latest version of that is 3.21



All new development by ESRI is in the 4.x version



Like Jquery, you can either link to the API or download it



Probably should stick with the hosted version unless a specific reason to do otherwise

<script src="http://js.arcgis.com/4.4/"></script>



You also need to link to a CSS file

<link rel="stylesheet"

href="https://js.arcgis.com/4.4/esri/css/main.css">

Remember, just because you link to one file doesn’t mean you can’t link to your own files

too!

92

Microsoft_PowerPoint_Slide91.sldx
The API

Current Version: 4.4

New releases come quarterly or biannually, but not predicable

Should always include the version number in the link because of this

You can still use 3.x version if you like. Latest version of that is 3.21

All new development by ESRI is in the 4.x version

Like Jquery, you can either link to the API or download it

Probably should stick with the hosted version unless a specific reason to do otherwise

<script src="http://js.arcgis.com/4.4/"></script>

You also need to link to a CSS file

<link rel="stylesheet" href="https://js.arcgis.com/4.4/esri/css/main.css">

Remember, just because you link to one file doesn’t mean you can’t link to your own files too!

92

image2.png

image3.png

Microsoft_PowerPoint_Slide6.sldx
Let’s Talk About Programmers and Programming

7

Programmers are lazy

A normal person gets handed a job and gets at it. A programmer thinks, “I wonder if there is a way I can get the computer to do this?”

Programmers and thieves

Never create what you can take or take and modify

No, really, Programmers are REALLY lazy

It takes a certain type of person to think you can shorten a sentence like “Take these two numbers and add them together, then give me the result.” (69 characters)

In programmer, that’s “function add(int a,int b){return (a+b)}” (40 characters)

Code is often just a method of reducing typing

Programmers like challenges like puzzles

How many things can I make out of a handful of building blocks? That’s the essence of every language

image5.jpeg

PO NO1 DISTURB

Have a nice day :)

image2.png

image3.png

LET' TALK ABOUT PROGRAMMERS AND
PROGRAMNING

image93.emf


There is a lot of free data out there



However, normally you’re interested in publishing your own data



ArcGIS Server



ArcGIS Online



Portal



All use REST Services



REST Services are a way to publish data in a web digestible way



Tech Center Services: http://services.wvgis.wvu.edu/ArcGIS/rest/services



Publishing services the counter part to application programming



Services tell you what you can do with the information you have



Learning to read services is critical

93

Microsoft_PowerPoint_Slide92.sldx
ArcGIS REST Services and the API

There is a lot of free data out there

However, normally you’re interested in publishing your own data

ArcGIS Server

ArcGIS Online

Portal

All use REST Services

REST Services are a way to publish data in a web digestible way

Tech Center Services: http://services.wvgis.wvu.edu/ArcGIS/rest/services

Publishing services the counter part to application programming

Services tell you what you can do with the information you have

Learning to read services is critical

93

image2.png

image3.png

BRCGIS REST SERVICES AND THE API

image94.emf


Built upon Dojo



Another Javascriptframework like Jquery



They use Dojo for nerdy reasons



You can use Dojo and Jquery at the same time – we normally do here



Two ways to call Dojo:



Legacy (pre-3.4)

dojo.require("esri.map");



AMD – Asynchronous Module Definition (3.6 forward)

require(["dojo/ready"], function(ready){

ready(function(){

// This function won't run until the DOM has loaded and other modules that register have run.

});

});



Similar to Jquery’s

$(“document”).ready(function(){});



You can use either style…. For now.



A lot of elements are done in dojo widgets, also called dijits

94

Microsoft_PowerPoint_Slide93.sldx
Dojo

Built upon Dojo

Another Javascript framework like Jquery

They use Dojo for nerdy reasons

You can use Dojo and Jquery at the same time – we normally do here

Two ways to call Dojo:

Legacy (pre-3.4)

dojo.require("esri.map");

AMD – Asynchronous Module Definition (3.6 forward)

require(["dojo/ready"], function(ready){

 ready(function(){

 // This function won't run until the DOM has loaded and other modules that register have run.

 });

});

Similar to Jquery’s $(“document”).ready(function(){});

You can use either style…. For now.

A lot of elements are done in dojo widgets, also called dijits

94

image2.png

image3.png

image95.emf
95

Microsoft_PowerPoint_Slide94.sldx
Exercise 5

95

image5.jpeg

7
When a feacher wants o knew
if there are any questions, she
doesnt mean any guestion.

She wants To pe asked oboul
the thing ches teaching. So

it shet “teaching you aboul™
Mexico, don’'t ask if "Bubbles
iS & good name fot a hamster.

ssnel

image2.png

image3.png

image96.emf


https://developers.arcgis.com/javascript/latest/sample-code/index.html

96

Microsoft_PowerPoint_Slide95.sldx
Using the Samples

https://developers.arcgis.com/javascript/latest/sample-code/index.html

96

image5.png

ArcGIS for Developers ¢ Dashboard + v GetStarted Documentation Pricing Support Q !ank

Web API / JavaSeript APl / 4.4 / Sampl

ArcGIS API for JavaScript

Sample Code

Q Search for samples
v Get Started
Overview

> Latest Samples

> Mapping and Views

> Layers
2 Get started with MapView - Get started with SceneView Get started with layers Get started with popups

Create a 2D map - Create a 3D map

AmD AD AmD Am

> Featurelayer

> Scenelayer

> MapimageLayer

> ImageryLayer

> PointCloudLayer

> Custom Layers

> Visualization Visualize all features with Get started with widgets Data-driven continuous Reference Arcade

the same symbol using BasemapToggle color expressions in

S Panline Bt imTarmmlata

image2.png

image3.png

‘USING THE SMPLES

image97.emf


https://developers.arcgis.com/javascript/latest/api-reference/index.html

97

Microsoft_PowerPoint_Slide96.sldx
Using the API Reference

https://developers.arcgis.com/javascript/latest/api-reference/index.html

97

image5.png

ArcGIS for Developers € Dashboard + w GetStarted Documentation Pricing Support aQ :ank

GIS Web APl / JavaScript AP| / 4.4 / APIRefer

ArcGIS API for JavaScript

AP Reference @ Forum

Q, Search API Reference Quicklinks | Allmodules Index

> esii
Map, MapView and SceneView

> esri/core

+ Map - MapView - SceneView - Popup - PopupTemplate - Camera - Viewpoint - WebScene - WebMap
> esri/core/accessorSupport

> esri/core/workers Layers

> esri/geometry « ElevationLayer - FeatureLayer - ImageryLayer - IntegratedMeshLayer - MaplmageLayer - MapNotesLayer - PointCloudLayer -

SceneLayer - StreamLayer - TileLayer - VectorTileLayer
> esri/geometry/support
+ CSVLayer - GeoRSSLayer - GraphicsLayer - GroupLayer - OpenStreetMapLayer - WebTileLayer - WMSLayer - WMTSLayer
> esri/identity
Symbols
> esiiflayers

« Fillsymbol - LineSymbol - MarkerSymbol - PictureFillSymbol - PictureMarkerSymbol - SimpleFillSymbol - SimpleLineSymbol -

P SRR SimpleMarkerSymbol - Symbol - TextSymbol

> esri/portal + ExtrudeSymbol3DLayer - Fillsymbol3DLayer - IconSymbol3DLayer - LabelSymbol3D - LineSymbol3D - LineSymbol3DLayer -
MeshSymbol3D - ObjectSymbol3DLayer - PathSymbol3DLayer - PointSymbol3D - PolygonSymbol3D - Symbol3D - Symbol3DLayer -
> cEiEdEEs TextSymbol3DLayer

> esri/renderers/smartMapping/creators
Renderers

image2.png

image3.png

‘USING THE API REFERENCE

image8.emf
8

•

HTML, CSS, XML….

What’s with all the

letters? And what’s

that gotta do with

Javascript?

•

So it’s Java, right?

•

Where do I get one?

•

Do I have a Web 1.0,

2.0, or what?

•

How do you spell it?

image98.emf
Basic Topics



Get started with MapView - Create a 2D map



Get started with layers



Get started with popups

Advanced Topics



Widgets



Features



Data driven visualization



Spatial Queries

98

Microsoft_PowerPoint_Slide97.sldx
Working With Samples

Basic Topics

Get started with MapView - Create a 2D map

Get started with layers

Get started with popups

Advanced Topics

Widgets

Features

Data driven visualization

Spatial Queries

98

image2.png

image3.png

‘WORKING WITH SAMPLES

image99.emf
99

https://developers.arcgis.com/javascript/latest/sample-code/get-started-mapview/index.html

Microsoft_PowerPoint_Slide98.sldx
Get started with MapView - Create a 2D map

99

https://developers.arcgis.com/javascript/latest/sample-code/get-started-mapview/index.html

image5.png

& HTML | & Output

1 KIDOCTYPE htnl>

2 <html>
3+ <head>

2

5 nitial-scale=1,maximun-scale=1,user-scalable=no”>
6 <titleet started with MapView - Create a 20 map - 4.4</titles

7e <style

8 henl,

9 body,

10+ s#viewdiv {

11 padding

12 margin

13 height

12 width:

15 3

16 <Ustyle>

17

15 <link re
1o <script sn

tylesheet” href="https://js.arcgis.con/a.4/esri/css/main. css™>
https://3s.arcgis.con/4.a/"></script>

21+ <seript

22+ require([
23 “esri/Map”,
2 ‘esri/vieus/MapView",
25 "dojo/donReady! "
26+ 1, function(Map, MapView) {
27
28+ var map = new Map({
29 basemap: "streets”
38 n;
31
EEN var view = new Mapview({
33 container: "viewiv',
3 map: map,
35 zo0m: 4,
36 center: [15, 65] // Longitude, Latitude
37 »;
38
39 n;
26 </scripts
41 </head>
dewDiv"></div>
45 </body>
46 </html>

Esri, HERE, Gamin, NGA, USGS.

A Description

& Download

image2.png

image3.png

GET STARTED WITH MAPVIEW - CRERTE &
MEP

image100.emf
100

https://developers.arcgis.com/javascript/latest/sample-code/get-started-layers/index.html

Microsoft_PowerPoint_Slide99.sldx
Get started with layers

100

https://developers.arcgis.com/javascript/latest/sample-code/get-started-layers/index.html

image5.png

ArcGlIS API for JavaScript Sandbox

& HTML | & Output

KIDOCTYPE html> N

<html>

<head> +
<meta charset="utf-8">
<meta name="viewport” content="initial-scal
«<title>Get started with layers - 4.4</title>

,maxinun-scale=1,user-scalabl

<link rel="stylesheet” href="https://js.arcgis.con/4.4/esri/css/main. css">
<script src="https://js.arcgis.con/a.4/"></script>

<style>

html,

body,

#viewbiv {
padding
margi
height:
width: 16e%;

¥

#layerToggle {
top: 20px;
right: 20px;

position: absolute;

2z-index: 99; 1
background-color: white;

border-radius: 2px;

padding: 10px
opacity: 0.75;

</style>

<script>
require([

esri/Map”,
esri/views/Scenevieu”
esri/layers/Tilelayer”,
dojo/don”,
dojo/on",

“dojo/donReady!
1
function(

Map, SceneView, TileLayer, dom, on

) {
T STt

TileLayer instances. One pointing to a v Esri, DeLorme, NaturalVue | Esri, HERE | NOAA OCS, Esi, DeLorme

* create

A Description

Download

Transportation

Manhasse
Neck

Powered by Esti

image2.png

image3.png

GET STARTED WITH LAYERS

image101.emf
101

https://developers.arcgis.com/javascript/latest/sample-code/get-started-popup/index.html

Microsoft_PowerPoint_Slide100.sldx
Get started with popups

101

https://developers.arcgis.com/javascript/latest/sample-code/get-started-popup/index.html

image5.png

ArcGlIS API for JavaScript Sandbox

P HTML | & Output # Description

1 KIDOCTYPE html> W
2+ <html> i 55 o
5+ <head> g l’ 2
a A 2
<meta name="viewport” content="initial-scale-1,maxinun-scale=1,user-scalable=no"> Horth b
<title>Get started with popups - 4.4</title> Sleheh - =
<style>
html, LE) %
body, - e e
#viewdiv { . Rdt E£-Ustick Rd W-Ustick-Ra: W-Ustick-Ra:
usTIcK
+ aoek; $ gl : =
width: 100%; 5 Te=ksun s 3 W Northy
3 9 ks i 3 g
el 12 : L
#instruction { 5 s g H 2 :
2-index: 99; z z s
position: absolute; CLGYERDATE i
: £ RinacAver]|E Pino Avs
margin-left: -175px; Grubsr. i
5 height: 20p n BEATTY W Befhelst
2 width: 350px; Rd £ FrankiinRd WErankiin R Sy}
27 background: rgba(2s, 25, 25, .8); PERKINS BoISE
28 color: whit JUNCTION
29 } N s
30 </styles il
F g < 5 g MG
32 <link rel="stylesheet" href="https://js.arcgis.con/4.4/esri/css/main.css"> H & 5 =
33 <script src="https://js.arcgis.com/4.4/">¢/script> £ OverlandRd. L] il g H
34 = E ey i
35. <script> il = 3
36+ require([1 2
37 “esri/tasks/Locator”, . $ n
38 sri/Map”,
39 sri/vieus/MapView”,
40 0jo/donReady! " 198 |
o 7, funceion(Rd- ! W-\ictory-Ad Wovictory.Ra
a2 Locator, &
5 Wap, o J
2 MapVieu T ey)
FRRRE: I L Ganal 7 e Mirgolio St & L |\
47 // Set up a Locator task using the world geocoding service ¥ County of Ada, Esri, HERE, Garmin, USGS, Bureau of Land Management, EPA, NPS, USDA Powered by Esri

Keyboard shortcuts: cerl + snife + > Incresse sandbox code fontsize. Copyright ©2017 Esri. Allrights reserved. | Frivacy | Terms of use

image2.png

image3.png

GET STARTED WITH POPUPS

image102.emf
102

Microsoft_PowerPoint_Slide101.sldx
Exercise 6

102

image5.jpeg

Retpnic)
iy
=
©]

“There aren’t any icons to click. It’s a chalk board.”

image2.png

image3.png

Microsoft_PowerPoint_Slide7.sldx
What is Javascript?

8

HTML, CSS, XML…. What’s with all the letters? And what’s that gotta do with Javascript?

So it’s Java, right?

Where do I get one?

Do I have a Web 1.0, 2.0, or what?

How do you spell it?

image5.jpeg

image2.png

image3.png

WHAT IS JAVASCRIPT?

i 55 0.
oters? Andwnes

image103.emf
103

https://developers.arcgis.com/javascript/latest/sample-code/get-started-widgets/index.html

Microsoft_PowerPoint_Slide102.sldx
Get started with widgets using BasemapToggle

103

https://developers.arcgis.com/javascript/latest/sample-code/get-started-widgets/index.html

image5.png

ArcGIS API for JavaScript San

& HTML | &2 Output A Description || & Download

1 KIDOCTYPE html> N &

2+ <html>

3+ <head> -

4 meta charses _

5 <meta name="viewport" content="initial-scale-1,maximun-scale=1,user-scalable=no”>

6 <titlesGet started with widgets using BasemapToggle - 4.4</title>

7

5 clink rel="stylesheet" href="https://js.arcgis.con/4.4/esri/css/main.css">

9 <script src="https://js.arcgis.con/4.4/"></script>

10

11- cstyle 7

12 html,

13 body,

tae sviewdiv {

15 padding: 6;

16 margin: 0

17 height: 160%;

18 width: 1ee%;

19 3

20 Ustyles

2

22+ <seripts

23+ require([

22 esri/Map”,

25 esri/views/MapVie i

2 esri/widgets/BasenapToggle”,

27 “dojo/donReady!

28 1. Atlantic
20+ function(Map, Mapvieu, BasemapToggle) { Ocean
30

o // Create the Map with an initial basemap

N var map = new Map({

33 basenap: "topo”

= s Pacific g
36 // Create the MapView and reference the Map in the instance cean

27 var view = new MapView({

38 container: "viewiv",

39 nap: map,

40 [-86.e40, 33.485],

a1

a2

43

4a // 1 - Create the widget

5 var toggle = new BasemapToggle({ 4
26 // 2 - set properties o
a7 view: view, // view that provides access to the map's "topo’ basemap ~ Esr HERE, Garmin, FAD, NOAA, EPA ¥ Powered by Esi

Keyboard shortcuts: cerl + snife + > Incresse sandbox code fontsize. Copyright ©2017 Esri. Allrights reserved. | Frivacy | Terms of use

image2.png

image3.png

GET STARTED WITH WIDGETS USING.
ENAPTOG

image104.emf
104

https://developers.arcgis.com/javascript/latest/sample-code/visualization-vv-color/index.html

Microsoft_PowerPoint_Slide103.sldx
Data-driven continuous color

104

https://developers.arcgis.com/javascript/latest/sample-code/visualization-vv-color/index.html

image5.png

& HTML | & Output

Keybosrd shorcuts: cerl + smife + < Decress

KIDOCTYPE html>

<title>Data-driven continuous color - 4.4</title>

"stylesheet” href="https://js.arcgis.con/4.4/esri/css/main. css™>
<script src="https://js.arcgis.con/a.4/"></script>

<style>
html,
body,
#viewbiv {

</style>

<script>
require([
sri/May
sri/vieus/MapView”,
‘esri/layers/Featurelayer”,
sri/renderers/SimpleRenderer”,
sri/symbols/SinpleFillsynbol”,
‘esri/uidgets/Legend”,
"dojo/domReady! "
1, function(
Map, MapView, Featurelayer, SimpleRenderer, Simplefillsymbol, Legend

)<
var defaultSyn = new SimpleFillsymbol({

ightgray”,
0.5

// Limit visualization to southeast U.S. counties
var defexp AL, "STATE = "AR'",
"STATE
"STATE

TR TR RIS
* Set a color visual variable on the renderer. Color visual variables

zancbox code font size

maximun-scale=1,user-scalable=no”>

A Description

Downlozd

Poverty in the southeast U.S.

Columbus &
+ Indianapolis

o Gincinnati

Jefferson I 5 population in poverty by county

Gity.
Population with income < than

poverty level divided by 2015 Total
Population

>30%
Kk

i

Esri, HERE, Gamin, NGA, USGS, NPS | Esrl, HERE, NPS. Powered by Esri

Copyright @ 2017 Esri. Allrights reserved. | Privacy | Terms of use

image2.png

image3.png

DATA-DRIVEN CONTINUOUS COLOR

image105.emf
105

https://developers.arcgis.com/javascript/latest/sample-code/featurelayer-query/index.html

Microsoft_PowerPoint_Slide104.sldx
Query features from a FeatureLayer

105

https://developers.arcgis.com/javascript/latest/sample-code/featurelayer-query/index.html

image5.png

ArcGlIS API for JavaScript Sandbox
P HTML | & Output # Description

K1DOCTYPE html>
- <html>
- <head>

<meta charses >

<meta name- content-" > ‘Well buffer distance: [10000 meters
<ctitle>Query features from a FeatureLayer - 4.4¢/title>

Download

Select well type:
‘Approved Intent to Drill

Earthquake magnitude: 20

<link rel= href= > Query Earthquakes

<script src= ></script>

- <styles
html,
body,
- aviewbiv {
height: 100%;
width: 106
margin: 0;
padding: ©;
i

- winfobiv {
background-color: white;
color: black;
padding: 6px;
uidth: 408px;

i

- mresults {
font-weight:
}
</styles

bolder;

<script>
require([

1
function(
Map, Mapvieu, -

Esri, HERE, Garmin, NGA, USGS, NPS | Esti, HERE, NPS' Powered by Esii

image2.png

image3.png

QUERY FERTURES TROM K FERTURELAYER

image106.emf
106

Microsoft_PowerPoint_Slide105.sldx
Exercise 7

106

image5.gif

“We’re supposed to stop for a mini exercise
break twice a day. Does a tantrum count?”

image2.png

image3.png

image107.JPG
[save s
Saver:)} My Flder
T Neme
b d

Recent Places

Desktop

=]

Libraries.

LY

Computer

- 0 E

Date modified

Noitems match your search.

Fle name:

Save astype:

indextm

=]

Type

[Fyper Test Merkup Language fe (- hum:

e

image108.JPG
ot » i 5 SOl 1 Guhnet s Basiet b %]| =
G M
i e 4 Neme b Date modified Type
B Deskiop Wes ST/N13052AM File folder
8 Downloads B SMIIAM Fiefolder
47 Dropbox © indechtm! 8/7/20139:52AM Chrome HTML Do. 0KB

8 Photo Stream
) Recent Places

image9.emf
9

image109.PNG
<!DOCTYPE html>

to Javascript</title>
tylesheet” href="css/style.css">
Js/script.js"></scripts

<script sr

</head>

<body>
<hisExercise 1</h1>

<h2 id:

estCS5">To test this CSS, let's make this orange</h2>

<input id="testdavascript” type="button” valu

onclick="btnClicked()">

Test Javascript”

</body>
</html>

image110.JPG
[Into to Javascript

& 2 C [0 filey//Rifuserfies/Frank/Javascripth20Ciass/Exercises/Exercise%

Exercise 1

To test this CSS, let's make this orange

image111.PNG
#testCss{

}

color:

#F£9600;

image112.JPG
1) Intro to Javascript

€[filey//RiuserFiles/Frank/Javascript%20Class/Exercises/Exercise’

Exercise 1

To test this CSS, let's make this orange

image113.PNG
function btnClicked()

alert("Javascript seems to be working Fin

image114.JPG
[Intro to Javascript

& = € | D) file///RiuserFiles/Frank/Javascript%20Class/Exercises/Exercise%20]

Exercise 1

To test this CSS, let's make this orange
JavaScipt Alert

Javascript seems to be working fine!

image115.PNG
<!DOCTYPE html>

<html>

<head>
<title>Intro to Javascript</title>
<link rel="stylesheet” href="css/style.css">
<script src

Lis"></scripts

s/script.js"></script>
</head>
<body>

<hi>Exercise 1</h1>

<h2 1

test(S5">To test this (SS, let's make this orange</h2>

<input id="testdavascript” type="button” valu

Test Javascript” onclick="btnClicked()">

</body>
</html>

image116.PNG
$(document) . ready(function(){
alert("jQuery was successfully loaded!

I H

image117.PNG
$(document) . ready (function(){

$("#changeColor”) . click(function(){
$(#TestCss’).css("color”, "#FFeeea”);
$(#testCss’) . text("Now I'm red!”);
Bl

s

image118.PNG
slideBtn” type="button” value="Toggle Slide">

fadeBtn" type="button" valu

Toggle Fade”>

lideparagraph”>This paragraph will slide in and out of our pages display</p>

<p id="fadeParagraph”>This paragraph will fade in and out of our pages display</p>

Microsoft_PowerPoint_Slide8.sldx
How The Web Worked… and Works Now

9

image5.png

e
S

@

10

8 ¢

s

Vel

Re>3
[~8 ¢

8(
Eralai

[Ed] & &

weg2o &

image2.png

image3.png

"HOW THE WEB WORKED.... AND WORKS
Now

image119.PNG
$(#slideBtn’).click(function(){

var slideText = $('#slideParagraph’).text();
slideText = slideText + " CLICKED!";

$("#slideparagraph’).text(slideText);

$("#slideparagraph’).slideToggle();
s

$("#fadestn").click(function(){

var fadeText - $('#fadeParagraph’
fadeText = fadeText + " CLICKED!

Ltext();

$("#fadeParagraph’) . text(fadeText);

$("#fadeParagraph’).fadeToggle();
I H

image120.png
addToArray” typ:

mber” values!
button” valu

>
Add to Array”>

tParagraph”>Numbers in array less than 100:</p>
<p id="gtParagraph“>Numbers in array greater than 100:</p>

image121.png
var numbersArray = new Array();
$("#addToArray").click(function(){
var numToAdd = $("#nunToAdd’).val();

var 1tParagraph = “Numbers in array less than 16e:
var gtparagraph = "Numbers in array greater than 166:

numbersArray . push (nunToAdd) ;

for (var i = 8; i < numbersArray.length; i++) {
if (numbersArray[i] < 100) {
1tParagraph = 1tParagraph + numbersArray[i] +
$("#1tparagraph’) . text(1tParagraph) ;
} else if (numbersArray[i] > 106) {
gtParagraph = gtParagraph + numbersArray[i] +
$("#gtparagraph’) . text(gtParagraph) ;

A

image122.png
| <input id="clearArray” type="button" value="Clear Array">

image123.png
$(#clearArray’).click(function(){

nunbersArray

new Array();

$(#1tParagraph’). text(
$("#gtParagraph’). text(
s

umbers in array less than 166
umbers in array less than 166

image124.png
Print Object”>
2 <p id="ojectContents™></p>

image125.png
EBovavounswnnr

$("#showdbject"). click(function(){

?ar (x in person)
txt=txt + person[x] +

1

5("#ojectContents’) . text(txt);
s

‘Doe”, age:25};

image126.png
B

value="Make Objects">

image127.png
Boonuounasuwnr

1
12
13
12

$("#showHeading’). clicl

s

(function(){
‘This heading is
‘This heading is
‘This heading is

var headingl={text:
var heading2={text:
var heading3={text:

5("#object1’) . text(headingl. text);
3("#object1’) .css("color”, headingl.

5("#object2") . text(heading2. text) ;
3("#object2) .css("color”, heading2.

5("#object3") . text(heading3. text) ;
3("#object3’) .css("color”, heading3.

green”, color: "green};

.color);

.color);

.color);

image10.emf
10

HTML is the structure CSS is the facade

image128.png
(e I e

10
1

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" conten:
<title>Get started with MapView
</head>
<body>

</body>
</heml>

nitial-scale=l, maximum-scale=l, user-scalable=no">
- Create a 2D map</title>

image129.png
<link rel=
<script sz

"stylesheet" href="https://is.arcgis.com/4.4/esri/css/main.css">
https://is.arcqis.con/d.4/"></script>

image130.png
11
12
13
12
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

<script>
require ([

"esri/Map",
"esri/views/MapView",
"dojo/domReady! "

1, function(Map, MapView) {

var map = new Map ({

basemap:

D

container

"streets”

new MapView({
viewDiv®,

map: map,

zoom: 4,

cente:

ni
</script>

[15, 651 // longitude, latitude

image131.png
viewDiv"></div>

image132.png
<style>
html,
body,
#viewDiv {

¥
</style>

image133.png
s
+ Transportation
g 3
+
(i
4

Esri, DeLorme, NaturalVue | Esti, HERE | NOAA OCS, Esri, DeLorme Powered by Esti

in the View live

image134.png
var view = new SceneView({
container: "viewdiv",
map: map

bh

image135.png
var view = new MapView({

container: "viewdiv",
60 map: map,
61 center: [-116.3031, 43.6088],

62 zoom: 12

bl

Microsoft_PowerPoint_Slide9.sldx
HTML, CSS, and Javascript

10

HTML is the structure

CSS is the facade

image5.jpeg

image6.jpeg

image2.png

image3.png

HTHL, CSS, AND JRVASCRIPT

image136.png
require([
‘esri/tasks/Locator”,
‘esri/Map”,
‘esri/vieus/MapView",
‘dojo/donReady!

1 1, function(

Locator,

image137.png
34~ require([
3 esri/Map”,

36 esri/views/SceneVien”
37 esri/layers/TileLaye
38 esri/tasks/Locato

r

a1 dojo/ donReady!

a2 1

image138.png
a8~
49
se
51

// Set up a Locator task using the world geocoding service
var locatorTask = new Locator({

url: "https://geocode.arcgis. con/arcgis/rest/services/vorld/Geocodeserver™
b

image139.png
71~
72
73
74
75
76
77
78~
79
80
81
82
83
84
85
86
a7~
88
89
o0~
o1
92
o3
o4
o5

view.on("click”

» function(event) {

event. stopPropagation(); // overwrite default click-for-popup behavior

// Get the coordinates of the click on the view

var
var

1at = Math.round(event.napPoint.latitude * 1000) / 1666
lon = Math.round(event.napPoint. longitude * 1008) / 168!

view.popup.open({

// Set the popup’s title to the coordinates of the Location

title: "Reverse geocode: [* + lon + ", " + lat + "]",

locatior

bH

7/ Display the popup
// Execute a reverse geocode using the clicked Location

locatorTask. locationToAddress (event . mapPoint) . then(function(

response) {
// If an address is successfully found, show it in the popup’s content
view.popup.content = response.address;

}).otheruise(function(err) {

// If the promise fails and no result is found, show a generic
view.popup. content =

»;
i

“No address was found for this location”

event.mappoint // Set the Location of the popup to the clicked Locati

message

image11.emf
11

Microsoft_PowerPoint_Slide10.sldx
Javascript Is Doing

11

image5.jpeg

image2.png

image3.png

JAVASCRIPT 1S DOING

image12.emf
12

• Hyper Text Markup Language

• History

• Created in early 90’s

• Type of SGML (Standard

Generalized Markup Language)

• Defines what’s on the page

• A list of all the elements you can

do stuff with and to

• How it’s written

• Uses keywords surrounded in <

>

• <keyword> ‘opens’ a tag

• The / symbol means ‘end’

• </keyword> ‘ends’ a tag

• We’re not born in a barn

programmers!

• If you open a tag, close a tag!

• Two Parts in an HTML Document

• Head

• Body

Microsoft_PowerPoint_Slide11.sldx
The Structure - HTML

12

Hyper Text Markup Language

History

Created in early 90’s

Type of SGML (Standard Generalized Markup Language)

Defines what’s on the page

A list of all the elements you can do stuff with and to

How it’s written

Uses keywords surrounded in < >

<keyword> ‘opens’ a tag

The / symbol means ‘end’

</keyword> ‘ends’ a tag

We’re not born in a barn programmers!

If you open a tag, close a tag!

Two Parts in an HTML Document

Head

Body

image5.jpeg

image2.png

image3.png

‘THE STRUCTURE - HTHL

image13.emf
13

• Cascading Style Sheets

• Conceptually around since the late

70’s

• Married to HTML as early as 1996

• Didn’t really take off in use until

early 2000’s

• Still have browser issue – no

browser has EVER implemented

all of the latest specification

• Defines how the elements in an HTML

document look

• It lives inside the Head of HTML

• How it’s written

• It’s complicated – see list of

tutorials for how to get started

• #element_name{tag:value}

• As far as Javascript is concerned, it’s

all about class!

Microsoft_PowerPoint_Slide12.sldx
The Façade - CSS

13

Cascading Style Sheets

Conceptually around since the late 70’s

Married to HTML as early as 1996

Didn’t really take off in use until early 2000’s

Still have browser issue – no browser has EVER implemented all of the latest specification

Defines how the elements in an HTML document look

It lives inside the Head of HTML

How it’s written

It’s complicated – see list of tutorials for how to get started

#element_name{tag:value}

As far as Javascript is concerned, it’s all about class!

image5.jpeg

image2.png

image3.png

‘THE TAGEDE - 055

image14.emf
14

•

History

•

Java IS NOT Javascript – they’re different

things

•

Originally called Livescript, but

jumped on the Java bandwagon

•

Created in 1995, became a standard in

1997

•

Originally avoided by ‘real’

programmers, but AJAX breathed life

into it

•

It’s the most popular web language of all

time

•

It’s the action of the structure and the façade

•

The System

•

HTML is What’s There

•

CSS is How It Looks

•

Javascript is What To Do With What’s

There and How To Make It Look

Microsoft_PowerPoint_Slide13.sldx
Putting it together - JavaScript

14

History

Java IS NOT Javascript – they’re different things

Originally called Livescript, but jumped on the Java bandwagon

Created in 1995, became a standard in 1997

Originally avoided by ‘real’ programmers, but AJAX breathed life into it

It’s the most popular web language of all time

It’s the action of the structure and the façade

The System

HTML is What’s There

CSS is How It Looks

Javascript is What To Do With What’s There and How To Make It Look

image5.jpeg

image2.png

image3.png

'PUTTING IT TOGETHER - JAVASCRIPT

image15.emf


Linguistically comes from C



The ‘Latin’ of programming



Interpreted Language



Not compiled like C/C++/Java



Runs in the browsers



Object based… but not orientated



Weak, also called dynamic, typing



Can be written with easy, lightweight tools



Simply need a text editor (like Notepad) to write and

a web browser to run



Lives within web pages



Need to know a little about HTML/CSS to do



There are “browser” issues

15

Microsoft_PowerPoint_Slide14.sldx
Javascript: Language Background

Linguistically comes from C

The ‘Latin’ of programming

Interpreted Language

Not compiled like C/C++/Java

Runs in the browsers

Object based… but not orientated

Weak, also called dynamic, typing

Can be written with easy, lightweight tools

Simply need a text editor (like Notepad) to write and a web browser to run

Lives within web pages

Need to know a little about HTML/CSS to do

There are “browser” issues

15

image5.png

{- 2. Romance languages in Europe

7
Iy

o

100 200 300km

© vuns Koabor, 2001
okoryskou@gmall com

1. Galian+Portuguese:
2 AstursLaonesa
2 Sparish
4 Upper Aragonsss

5. Caalan

G & Judeo-Spansh
T 7. Ovclan
& Gasoon

5. Langues ol Fronch)
. Gonoralzed French

10.Arpltan

11. Romansh
12 Galoialian
12 Ladin
14, Venat
15 Frivkan
16.Isirol
17 Contal l1alian
2 Goneralized ltallan
18 Carsican+Gallurese
19 Sassarese
20, SouthEasi Median
21.Southern liallan
[22/ Extrome Scuther tatian

23, Rumanian
= . Generalend Ramenion
24.Istro-Rumanian
25 South lkan omunco
28, Sardinian proper
[biingual areas

BOUNDARIES

ditectal

=
&

image2.png

image3.png

JAVASCRIPT: LANGUAGE BACKGROUND

image16.emf


Dozens of Tools – just my favorite

(Windows Only)



Editing - Notepad++



Free



Text highlighting



Multitabs



Running/Debugging - Chrome



Developer tools a MUST



Similar tools in Firefox

16

Microsoft_PowerPoint_Slide15.sldx
Javascript: Tools

Dozens of Tools – just my favorite (Windows Only)

Editing - Notepad++

Free

Text highlighting

Multitabs

Running/Debugging - Chrome

Developer tools a MUST

Similar tools in Firefox

16

image5.jpeg

image2.png

image3.png

JAVASCRIPT: T00LS

image17.emf
<!DOCTYPE html>

<html>

<head>

CSS and Javascript Live Here

</head>

<body>

Page Elements Live Here

</body>

</html>

17

Let’s the server know it’s a webpage

Opens the HTML Tag

Starts the Head of the page

Closes the Head of the page

Closes the Body of the page

Starts the Body of the page

Microsoft_PowerPoint_Slide16.sldx
Our First Program – “Howdy Do!”

<!DOCTYPE html>

<html>

	<head>

CSS and Javascript Live Here

	</head>

	<body>

Page Elements Live Here

	</body>

</html>

17

Let’s the server know it’s a webpage

Opens the HTML Tag

Starts the Head of the page

Closes the Head of the page

Closes the Body of the page

Starts the Body of the page

image2.png

image3.png

OUR FIRST PROGRAN —“HOWDY D0

[R——

image18.emf


Hierarchy of what’s on the page



Cross platform and language independent….

Except when it isn’t



Every element on a HTML page is something

on the DOM



Use ‘id’ to give it a name

18

• Can use tabs or spaces to indicate

hierarchy

• Machine doesn’t care, human’s do

Microsoft_PowerPoint_Slide17.sldx
The Document Object Model (DOM)

Hierarchy of what’s on the page

Cross platform and language independent…. Except when it isn’t

Every element on a HTML page is something on the DOM

Use ‘id’ to give it a name

18

Can use tabs or spaces to indicate hierarchy

Machine doesn’t care, human’s do

image5.jpeg

image6.png

This is the inner element
</div>
</div>

</body>

image2.png

image3.png

‘THE DOCUMENT OBJECT MODEL (DOM)

image19.emf


<div></div>



Short for ‘division’ (or not, depends on who you ask)



It has no visualization in and of itself – just a generic

container



It’s a ‘block’ level tag – used to block out a group of

elements





Inline generic container



Usually used around a single element



Functional difference?



Div tends to have a ‘return’ after it where span does

not.



Div tends to take more ‘rendering’ time.



Don’t be too ‘divisive’! Use Div sparingly!



Called ‘div-itis’



Also….. Everybody ignores this rule



19

Microsoft_PowerPoint_Slide18.sldx
DOM: Most Important Elements to Javascript

<div></div>

Short for ‘division’ (or not, depends on who you ask)

It has no visualization in and of itself – just a generic container

It’s a ‘block’ level tag – used to block out a group of elements

Inline generic container

Usually used around a single element

Functional difference?

Div tends to have a ‘return’ after it where span does not.

Div tends to take more ‘rendering’ time.

Don’t be too ‘divisive’! Use Div sparingly!

Called ‘div-itis’

Also….. Everybody ignores this rule 

19

image5.gif

Menu and content
dynamic

3 columns, all
dynamic

Menu fixed, content
& header dynamic

Menu fixed, Content
dynamic

4 columns, all
dynamic

3 columns fixed
centered

Menu and content
dynamic

Menu floating

dynamic with
header and footer

image2.png

image3.png

DOM: MOST INPORTANT ELENENTS T0
JAVASCRIPT

[| =]]
oo
[w]w]}

image20.emf


We can include Javascript in two ways



Type it in our document directly



Link to an outside file



Both use the <script> tag, normally in the head



The in document method makes everything centralized



Good for keeping it all together



Get messy when your programs grow



Doesn’t allow for easy reuse



Linked method fixes most of these problems – use that

20

Microsoft_PowerPoint_Slide19.sldx
Inline Javascript vs Linked Files

We can include Javascript in two ways

Type it in our document directly

Link to an outside file

Both use the <script> tag, normally in the head

The in document method makes everything centralized

Good for keeping it all together

Get messy when your programs grow

Doesn’t allow for easy reuse

Linked method fixes most of these problems – use that

20

image5.png

PE html>

SJ<neml>
o <neaa>
=l <script type="text/javaseript">
Blerc.show("Here is some javaseripc!™):
</seript>
</nead>
o <pody>
</body>

</html>

image6.png

KIDOCTYPE html®
5 <neml>
D heaa>
<script type="text/javascript" src="js/main.js"></script>
</neas>
5 <boay>

</body>
</nem1>

image2.png

image3.png

INLINE JAVASCRIPT VS LINKED FILES

image21.emf
21

Websites need structure, otherwise it gets hard to

keep track of what goes where

• Important for organization

• Also important for referencing elements

• Relative vs absolute references

• Allows for easier re-use

• It’s just a pattern to follow… and you can

pick your own pattern, just

BE

CONSISTENT!!

Microsoft_PowerPoint_Slide20.sldx
Site Structure: A Primer

21

Websites need structure, otherwise it gets hard to keep track of what goes where

Important for organization

Also important for referencing elements

Relative vs absolute references

Allows for easier re-use

It’s just a pattern to follow… and you can pick your own pattern, just BE CONSISTENT!!

image5.jpeg

image2.png

image3.png

SITE STRUCTURL: § PRINER

image22.emf
22

The Structure for this class

1. Webpages end in .html (e.g. index.html)

1. Website names can be anything, but we use Camel Case for naming

1. Wikipedia For Camel Case

2. First letter is lower case, all other words are first letter upper case, rest lower (e.g. thisIsCamelCase)

2. Use the same for Javascript, so we’ll get used to it

3. Main page is named index.html

2. Major document types get their own directory

1. Javascript files go in ‘js’ directory

2. CSS files go in ‘css’ directory

3. Graphics go in ‘images’ directory

4. Other files (word, excel, pdf, etc) go in ‘misc’ directory

5. If you had other language files such as Php or Python, they would go in ‘include’ directory

1. Not going to have those in this course

3. Feel Free to make up your own after this course! You can do anything that makes the most sense to you, but the

important thing is….

BE CONSISTENT!!!

Microsoft_PowerPoint_Slide21.sldx
Site Structure: A Primer

22

The Structure for this class

Webpages end in .html (e.g. index.html)

Website names can be anything, but we use Camel Case for naming

Wikipedia For Camel Case

First letter is lower case, all other words are first letter upper case, rest lower (e.g. thisIsCamelCase)

Use the same for Javascript, so we’ll get used to it

Main page is named index.html

Major document types get their own directory

Javascript files go in ‘js’ directory

CSS files go in ‘css’ directory

Graphics go in ‘images’ directory

Other files (word, excel, pdf, etc) go in ‘misc’ directory

If you had other language files such as Php or Python, they would go in ‘include’ directory

Not going to have those in this course

Feel Free to make up your own after this course! You can do anything that makes the most sense to you, but the important thing is…. BE CONSISTENT!!!

image5.png

() Computer > Data (B SeeCole) » ampp) . idoes 1> e » < [op | scarch ctass:

File Edt View Tools Help

Organize ~

Open Includeinlibrary v Sharewith v Bum New folder

¢ Favorites
B Desktop
% Downloads
B Recent Places
B Sydrive
(B Google Drive

Date modified Type Size

8/5/2013232PM File folder
8/5/2013232PM __ File folder

s 8/5/2013232PM File folder
misc 8/5/2013232PM File folder

© indechtml 8/5/2013209PM Chrome HTML D¢ 1KB

image2.png

image3.png

image23.emf
23

Microsoft_PowerPoint_Slide22.sldx
Exercise 1: Setup Your Website

23

image5.gif

(Copyright 1997 Randy Glasbergen. www.glasbergen.com

GUASBERGEN
“I couldn’t do my homework because my
computer has a virus and so do all
my pencils and pens.”

image2.png

image3.png

EXERCISE 1: SETUP YOUR WEBSITE

image24.emf


Comments, Variables, and

Statements



Keywords



Literals



Operators



Data Types



Conditionals



Loops

24

Microsoft_PowerPoint_Slide23.sldx
Javascript: Let’s Start At The Very Beginning

Comments, Variables, and Statements

Keywords

Literals

Operators

Data Types

Conditionals

Loops

24

image5.jpeg

image2.png

image3.png

JAVASCRIPT: LET'S START AT THE VERY
BEGINNING

image25.emf


Keywords are words that ‘mean’ something to Javascript



They’re reserved – you can’t use them either willy or nilly



List



break, const, condition, continue, delete, do...while, export,

for, for...in, function, if...else, import, in, instanceOf,

label, let, new, return, switch, this, throw, try...catch,

typeof, var, void, while, with, yield



Incidentally, I’ll use

courier new

for all Javascript code

25

Microsoft_PowerPoint_Slide24.sldx
Keywords

Keywords are words that ‘mean’ something to Javascript

They’re reserved – you can’t use them either willy or nilly

List

break, const, condition, continue, delete, do...while, export, for, for...in, function, if...else, import, in, instanceOf, label, let, new, return, switch, this, throw, try...catch, typeof, var, void, while, with, yield

Incidentally, I’ll use courier new for all Javascript code

25

image2.png

image3.png

image26.emf


Three little known facts about comments



Comments are cool!



Comments give you warm fuzzies like kittens and

puppies



Comments are easy and important

(I may have made up one of those facts)



You want to comment your code as much as

possible



Code should be readable, but sometimes it needs

some explanation



It helps people who have to look at your code to

see what you were thinking



Especially important if you look at your own code

months after creation



How to comment in Javascript

//Single Line Comment

/* Multiline

comment example */

26

Microsoft_PowerPoint_Slide25.sldx
Comments

Three little known facts about comments

Comments are cool!

Comments give you warm fuzzies like kittens and puppies

Comments are easy and important

(I may have made up one of those facts)

You want to comment your code as much as possible

Code should be readable, but sometimes it needs some explanation

It helps people who have to look at your code to see what you were thinking

Especially important if you look at your own code months after creation

How to comment in Javascript

//Single Line Comment

/* Multiline
comment example */

26

image5.jpeg

image6.jpeg

image7.png

image2.png

image3.png

image27.emf


You have to follow certain rules when you name something



Names should be upper/lower case letters and numbers (A-Z, a-z, 0-9)



Start with a lower case letter, a underbar _ or $ for names



You can’t use these characters in names: /



You can indicate spaces with an underbar _



Starting a name with an underbar means something, sorta, kinda…. It’s problematic



You cannot use a keyword as name



You should follow certain conventions



Up to your programming group to create them



For this course, we use camelCase



Names all start with a lowercase letter



The name should be ‘meaningful’. In other words, calling something aThing isn’t appropriate – you

bothered to create the thing, give it a real name!



Shorter is normally better because…. Programmers are lazy.



Examples



fName, lName, homePhoneNumber, lovePotionNumber9

27

Microsoft_PowerPoint_Slide26.sldx
Identifiers

You have to follow certain rules when you name something

Names should be upper/lower case letters and numbers (A-Z, a-z, 0-9)

Start with a lower case letter, a underbar _ or $ for names

You can’t use these characters in names: /

You can indicate spaces with an underbar _

Starting a name with an underbar means something, sorta, kinda…. It’s problematic

You cannot use a keyword as name

You should follow certain conventions

Up to your programming group to create them

For this course, we use camelCase

Names all start with a lowercase letter

The name should be ‘meaningful’. In other words, calling something aThing isn’t appropriate – you bothered to create the thing, give it a real name!

Shorter is normally better because…. Programmers are lazy.

Examples

fName, lName, homePhoneNumber, lovePotionNumber9

27

image2.png

image3.png

image1.emf
Introduction to Programming Javascript and Interactive

Mapping Using ArcGIS Javascript API

image28.emf


A literal is literally the thing it is!



It’s a thing that should be taken and interpreted at face value



42



“howdy”



“The Rain In Spain Falls Mainly On The Cray Super Computer”



True



3.14

28

Microsoft_PowerPoint_Slide27.sldx
Literals

A literal is literally the thing it is!

It’s a thing that should be taken and interpreted at face value

42

“howdy”

“The Rain In Spain Falls Mainly On The Cray Super Computer”

True

3.14

28

image2.png

image3.png

'ITERALS

image29.emf


Data comes in various types



String



Integer



Real or Float (sometimes both)



Boolean



Object



Array



Javascript is dynamically typed



It has the type of whatever is stuck into it



If you put a string in a variable, the variable is type string. If you then put an integer in it,

the variable magically becomes type integer.



This will be the first source of head banging in your adventures in Javascript



Is that really true, or is it “true”? BAH!

29

Microsoft_PowerPoint_Slide28.sldx
Data Types

Data comes in various types

String

Integer

Real or Float (sometimes both)

Boolean

Object

Array

Javascript is dynamically typed

It has the type of whatever is stuck into it

If you put a string in a variable, the variable is type string. If you then put an integer in it, the variable magically becomes type integer.

This will be the first source of head banging in your adventures in Javascript

Is that really true, or is it “true”? BAH!

29

image2.png

image3.png

image30.emf


Basically they’re boxes that hold stuff.



They allow you to store things that you may

need



They can vary, hence the name



You can reuse boxes



Put whatever you want in there



Dynamically typed means you can change

what goes in there on the fly



Most of what we do in programming is

manage our variables and shuffle

information around



Think of variables as the ‘what’ in

programming – it’s what I have

30

Microsoft_PowerPoint_Slide29.sldx
Variables: Conceptual

Basically they’re boxes that hold stuff.

They allow you to store things that you may need

They can vary, hence the name

You can reuse boxes

Put whatever you want in there

Dynamically typed means you can change what goes in there on the fly

Most of what we do in programming is manage our variables and shuffle information around

Think of variables as the ‘what’ in programming – it’s what I have

30

image5.jpeg

image2.png

image3.png

'VARIBLES: CONCEPTURL

image31.emf


The keyword

Var

comes before a variable

name, thus making it a variable



var firstName;



var phoneNumber;



This is called declaring a variable



You can just make a variable without using

the keyword

Var

, but it makes an

automatically globally scoped variable



X = 42;



We’ll get to scope soon



Bad practice, so avoid it at all costs

31

Microsoft_PowerPoint_Slide30.sldx
Variables: Javascript

The keyword Var comes before a variable name, thus making it a variable

var firstName;

var phoneNumber;

This is called declaring a variable

You can just make a variable without using the keyword Var, but it makes an automatically globally scoped variable

X = 42;

We’ll get to scope soon

Bad practice, so avoid it at all costs

31

image5.jpeg

image2.png

image3.png

‘VARIABLES: [AVASCRIPT

image32.emf


Javascript is case sensitive!



var firstName;

is not the same thing as

var firstname;

and

var FIRSTNAME;

is

different still



Welcome to your second major source of head

banging in Javascript



You can declare a variable without

initializing it



var firstName;



You can also initialize it when you declare

the variable



var firstName = “Frank”;

32

Microsoft_PowerPoint_Slide31.sldx
Variables: Javascript

Javascript is case sensitive!

var firstName; is not the same thing as var firstname; and var FIRSTNAME; is different still

Welcome to your second major source of head banging in Javascript

You can declare a variable without initializing it

var firstName;

You can also initialize it when you declare the variable

var firstName = “Frank”;

32

image5.jpeg

image2.png

image3.png

Microsoft_PowerPoint_Slide.sldx
How I Stopped My Fear of Programming and Learned to Make Interactive Maps

Introduction to Programming Javascript and Interactive Mapping Using ArcGIS Javascript API

1

image4.png

image3.png

image2.png

HOW I STOPPED MY FEAR
OF PROGRAMMING AND
LEARNED T0 MARE
INTERACTIVE MEPS @

image33.emf


Use meaningful variable names!



The name should reflect what goes in the

variable



Var firstName;

is more useful than

Var

box1;



Picking names that reflect their intended

use is sometimes a good idea



If you want it to hold strings, use a name that

reflects that



Var firstName_STR;

33

Microsoft_PowerPoint_Slide32.sldx
Variables: Javascript

Use meaningful variable names!

The name should reflect what goes in the variable

Var firstName; is more useful than Var box1;

Picking names that reflect their intended use is sometimes a good idea

If you want it to hold strings, use a name that reflects that

Var firstName_STR;

33

image5.jpeg

image2.png

image3.png

‘VARIABLES: [AVASCRIPT

image34.emf


Like variables, except they don’t vary. They’re constant





Use them if you have a value you never want to change, but you want to reference

without having to type it in all the time.



Traditional example – PI is 3.14159265359



Can also use other types of constants, like integers or strings



You can’t have a constant and a variable with the same name



Done in Javascript with the keyword

const

const pi = 3.14159;

const homePage = http://www.wvgis.wvu.edu;

34

Microsoft_PowerPoint_Slide33.sldx
Constants

Like variables, except they don’t vary. They’re constant 

Use them if you have a value you never want to change, but you want to reference without having to type it in all the time.

Traditional example – PI is 3.14159265359

Can also use other types of constants, like integers or strings

You can’t have a constant and a variable with the same name

Done in Javascript with the keyword const

const pi = 3.14159;

const homePage = http://www.wvgis.wvu.edu;

34

image2.png

image3.png

image35.emf


They work to get literals into variables, or to get variables into other variables



We’re working with the operator

=



It’s basically similar to math, except it’s even easier



The variable we want stuff to end up in goes on the left, the stuff we want to stick

into the variable goes on the right



Var x = 5;



Var y = x + 10;



Var firstName_STR = “Frank”;



Var officeNum_STR = “431”;



Var aWeirdExampleVar = firstName_STR + y;

(we’ll explain this in a few minutes)

35

Microsoft_PowerPoint_Slide34.sldx
Expressions

They work to get literals into variables, or to get variables into other variables

We’re working with the operator =

It’s basically similar to math, except it’s even easier

The variable we want stuff to end up in goes on the left, the stuff we want to stick into the variable goes on the right

Var x = 5;

Var y = x + 10;

Var firstName_STR = “Frank”;

Var officeNum_STR = “431”;

Var aWeirdExampleVar = firstName_STR + y; (we’ll explain this in a few minutes)

35

image2.png

image3.png

image36.emf


Operators do things to variables



Arithmetic operators



Your basic math operators, +,-,/,*



Var x = 5 *10;



Var x = x + 4;



Assignment operators



The last example is so common we made up operators to

make it easier (programmers = lazy!)



+=, -=, *=, /=



Var x += 4;



Comparison operators



Used primarily in conditionals



==, !=, ===, !==, >, >=, <, <=



Equal – if = means ‘assign’, then == means ‘are the same’



Var x = 3

means make the variable x hold the value of 3



X == 3

means “is x equal to the value 3?”



=== means ‘are the same AND the same type’



X === ‘3’

means “is x equal to a string whose vale is ‘3’?”



!= means not equal, !== not equal or not the same type



> greater than, >= greater than or equal to



< les than, <= less than or equal to

36

Microsoft_PowerPoint_Slide35.sldx
Operators

Operators do things to variables

Arithmetic operators

Your basic math operators, +,-,/,*

Var x = 5 *10;

Var x = x + 4;

Assignment operators

The last example is so common we made up operators to make it easier (programmers = lazy!)

+=, -=, *=, /=

Var x += 4;

Comparison operators

Used primarily in conditionals

==, !=, ===, !==, >, >=, <, <=

Equal – if = means ‘assign’, then == means ‘are the same’

Var x = 3 means make the variable x hold the value of 3

X == 3 means “is x equal to the value 3?”

=== means ‘are the same AND the same type’

X === ‘3’ means “is x equal to a string whose vale is ‘3’?”

!= means not equal, !== not equal or not the same type

> greater than, >= greater than or equal to

< les than, <= less than or equal to

36

image5.jpeg

image2.png

image3.png

OPERETORS

image37.emf


&&

is ‘and’



||

is ‘or’



!

Is ‘not’



Used to string a few logical statements together,

mostly in conditionals



If(I == !hungry && time == dinner) I wait until I am

hungry to start dinner.



Translation into English, “if I am not hungry and it is dinner

time, wait until I am hungry before I start dinner”



Evaluates to either

true

or

false



Var a1 = true && true; //a1 will be true



Var a2 = true && false; //a2 will be false



Var a3 = true || false; //a3 will be true



Var a4 = !true; //a4 will be false;

37

Microsoft_PowerPoint_Slide36.sldx
Operators: Logical Operators

&& is ‘and’

|| is ‘or’

! Is ‘not’

Used to string a few logical statements together, mostly in conditionals

If(I == !hungry && time == dinner) I wait until I am hungry to start dinner.

Translation into English, “if I am not hungry and it is dinner time, wait until I am hungry before I start dinner”

Evaluates to either true or false

Var a1 = true && true; //a1 will be true

Var a2 = true && false; //a2 will be false

Var a3 = true || false; //a3 will be true

Var a4 = !true; //a4 will be false;

37

image5.jpeg

image2.png

image3.png

OPERRTORS: LOGICAL OPERRTORS

image2.emf


Instructors



Frank LaFone



Restrooms down the by the elevators



Parking Passes from the instructor



Refreshments in room 411



Ask questions whenever you like!

2

image38.emf


Starts to get harry here…. + is a string operator



+ with strings means ‘concatenate’



Var firstName_STR = “John”;



Var lastName_STR = “Smith”;



Var name_STR = firstName_STR + lastName_STR;



name_STR will be “JohnSmith”



Why isn’t there a space between the names?



What about that weird thing from before?



Var aWeirdExampleVar = firstName_STR + y;



When you ‘add’ a number to a string, it converts the number to a

string and concatenates it



Var y = 5;



Var firstName_STR = “Frank”;



Var aWeirdExampleVar = firstName_STR + y;



Result is “Frank5”



There is also a += for strings



Var name_STR = “John”;



name_STR += “ “;



name_STR += “Smith”;



Result:

John Smith

38

Microsoft_PowerPoint_Slide37.sldx
Operators: String Operators

Starts to get harry here…. + is a string operator

+ with strings means ‘concatenate’

Var firstName_STR = “John”;

Var lastName_STR = “Smith”;

Var name_STR = firstName_STR + lastName_STR;

name_STR will be “JohnSmith”

Why isn’t there a space between the names?

What about that weird thing from before?

Var aWeirdExampleVar = firstName_STR + y;

When you ‘add’ a number to a string, it converts the number to a string and concatenates it

Var y = 5;

Var firstName_STR = “Frank”;

Var aWeirdExampleVar = firstName_STR + y;

Result is “Frank5”

There is also a += for strings

Var name_STR = “John”;

name_STR += “ “;

name_STR += “Smith”;

Result: John Smith

38

image5.jpeg

image2.png

image3.png

OPERRTORS: STRING OPERATORS

image39.emf


Victor Borge, Punctuation http://www.youtube.com/watch?v=lF4qii8S3gw



We use punctuation in writing to let us know when stuff ends.



In programming, we do the same thing



The computer needs to know when the line is over



We only need one punctuation – the semi-colon ;



It lets us know when a statement is over



I can put multiple statements on one line as long as they have semi-colons



var x = 28; var y = ‘Spring’; var z += y;



Just because you can do something, doesn’t mean you should… but the computer doesn’t care

either way

39

Microsoft_PowerPoint_Slide38.sldx
What’s with the ; all over the place?

Victor Borge, Punctuation http://www.youtube.com/watch?v=lF4qii8S3gw

We use punctuation in writing to let us know when stuff ends.

In programming, we do the same thing

The computer needs to know when the line is over

We only need one punctuation – the semi-colon ;

It lets us know when a statement is over

I can put multiple statements on one line as long as they have semi-colons

var x = 28; var y = ‘Spring’; var z += y;

Just because you can do something, doesn’t mean you should… but the computer doesn’t care either way

39

image2.png

image3.png

image40.emf


This is a special type that can hold other things. Think of it as a box with smaller boxes in it



Arrays are useful to store a series of values in a single value



They are several “index” (or “key”) and then “value” pairs put together in a row of sorts



Visualy it looks like this:



We create arrays in Javascript with the keywords

new

and

Array

var colors = new Array();



That creates an empty array with nothing in it. We can access the elements in the array using a numeric index

colors[0] = “red”;

colors[1] = “blue”;

colors[2] = “yellow”;



Arrays always start a 0



The third thing that will make you want to bang your head in Javascript

If I wanted to get thing in the second box, I would write:

var myShirt = colors[1];



You can also create arrays with elements in them using the constructor

var grades = new Array(87,93,74,98,82,65);

40

1

st

El 2

nd

El 3

rd

El 4

th

El 5

th

El 6

th

El 7

th

El 8

th

El 9

th

El 10 El

Microsoft_PowerPoint_Slide39.sldx
Arrays

This is a special type that can hold other things. Think of it as a box with smaller boxes in it

Arrays are useful to store a series of values in a single value

They are several “index” (or “key”) and then “value” pairs put together in a row of sorts

Visualy it looks like this:

We create arrays in Javascript with the keywords new and Array

var colors = new Array();

That creates an empty array with nothing in it. We can access the elements in the array using a numeric index

colors[0] = “red”;

colors[1] = “blue”;

colors[2] = “yellow”;

Arrays always start a 0

The third thing that will make you want to bang your head in Javascript

If I wanted to get thing in the second box, I would write:

var myShirt = colors[1];

You can also create arrays with elements in them using the constructor

var grades = new Array(87,93,74,98,82,65);

40

		1st El		2nd El		3rd El		4th El		5th El		6th El		7th El		8th El		9th El		10 El

image2.png

image3.png

image41.emf


Yet another way to create an Array is with simple [and]

var myData = [];

var someData = [“London”, 32, “Madrid”, 12];



Yep, you can mix data types within an array because Javascript is dynamically

typed

41

Microsoft_PowerPoint_Slide40.sldx
Arrays

Yet another way to create an Array is with simple [and]

var myData = [];

var someData = [“London”, 32, “Madrid”, 12];

Yep, you can mix data types within an array because Javascript is dynamically typed

41

image2.png

image3.png

image42.emf


Sometimes you want a grid construction. That’s done with multidimensional arrays.



Like a table



Each element is indexed starting at 0.



Element 0,0 is the upper left of the table



Element 2,1 is the upper right of the table



You can move into 3 dimensional arrays, which look like a cube



We can even go higher – most modern computers will handle at least a 32bit integer

index, or 4.29 billion elements



Honestly, your brain starts to hurt around 3-4 dimensions though

42

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Microsoft_PowerPoint_Slide41.sldx
Arrays: Multidimensional

Sometimes you want a grid construction. That’s done with multidimensional arrays.

Like a table

Each element is indexed starting at 0.

Element 0,0 is the upper left of the table

Element 2,1 is the upper right of the table

You can move into 3 dimensional arrays, which look like a cube

We can even go higher – most modern computers will handle at least a 32bit integer index, or 4.29 billion elements

Honestly, your brain starts to hurt around 3-4 dimensions though

42

		0,0		1,0		2,0

		0,1		1,1		2,1

		0,2		1,2		2,2

image2.png

image3.png

ARRAYS; MULTIDIMERSIONAL

Microsoft_PowerPoint_Slide1.sldx
Various and Sundry Items

Instructors

Frank LaFone

Restrooms down the by the elevators

Parking Passes from the instructor

Refreshments in room 411

Ask questions whenever you like!

2

image2.png

image3.png

'VARIOUS KND SUNDRY ITEMS

image43.emf


To create in Javascript, we can add a second set of brackets

var myData = [][];

myData[0][0] = 75;

myData[0][1] = 81;



We can also us the new and array keywords

var myData = new Array();

myData[0] = new Array();

myData[0][0] = “red”;

myData[0][1] = “blue”;



We can also initialize on one line

var myData = [“hello”, [86,90,74,25], “red”];



The second element in this array is itself an array

43

Microsoft_PowerPoint_Slide42.sldx
Arrays: Multidimensional

To create in Javascript, we can add a second set of brackets

var myData = [][];

myData[0][0] = 75;

myData[0][1] = 81;

We can also us the new and array keywords

var myData = new Array();

myData[0] = new Array();

myData[0][0] = “red”;

myData[0][1] = “blue”;

We can also initialize on one line

var myData = [“hello”, [86,90,74,25], “red”];

The second element in this array is itself an array

43

image2.png

image3.png

RRRAYS: MULTIDIMERSIONAL

image44.emf


Sometimes you don’t want the index to be a number



Might make sense to use a string or object or some other index



Classic example:



Employee name as the index for other pieces of information, such as phone numbers, address, employee type,

benefits, etc.



They’re similar to multidimensional arrays, but slightly different

var myClothes = {pants:[“jeans”,”dress”,”suit”],

shirts:[“polo”,”tshirt”,”dress”], shoes:[“tennis”,”golf”,”dress”,”boots”]};



Things to note



starts and closes with { and }



Indexes aren’t in parentheses



How to access in javascript

var todaysOutfit = “I am wearing “+myClothes[‘pants’][0]+” today.”;



We tend to use objects instead of associative arrays – we’ll get to those soon

44

Microsoft_PowerPoint_Slide43.sldx
Arrays: Associative Arrays

Sometimes you don’t want the index to be a number

Might make sense to use a string or object or some other index

Classic example:

Employee name as the index for other pieces of information, such as phone numbers, address, employee type, benefits, etc.

They’re similar to multidimensional arrays, but slightly different

var myClothes = {pants:[“jeans”,”dress”,”suit”], shirts:[“polo”,”tshirt”,”dress”], shoes:[“tennis”,”golf”,”dress”,”boots”]};

Things to note

starts and closes with { and }

Indexes aren’t in parentheses

How to access in javascript

var todaysOutfit = “I am wearing “+myClothes[‘pants’][0]+” today.”;

We tend to use objects instead of associative arrays – we’ll get to those soon

44

image2.png

image3.png

'BRRAYS: ASSOCITIVE ARRAYS

image45.emf


Frameworks give us an existing structure to do

common tasks



Means we don’t have to recode everything from

scratch



We can mix our custom code with the framework

code



Frameworks do a number of things



AJAX (Asynchronous Javascript and XML)



DOM Wrappers (Document Object Model)



Visual Effects



JSON (JavaScript Object Notation)



CSS manipulation



Others



There are a number of Frameworks, but two

common one



jquery



Dojo

45

Microsoft_PowerPoint_Slide44.sldx
Frameworks and Javascript

Frameworks give us an existing structure to do common tasks

Means we don’t have to recode everything from scratch

We can mix our custom code with the framework code

Frameworks do a number of things

AJAX (Asynchronous Javascript and XML)

DOM Wrappers (Document Object Model)

Visual Effects

JSON (JavaScript Object Notation)

CSS manipulation

Others

There are a number of Frameworks, but two common one

jquery

Dojo

45

image5.jpeg

image2.png

image3.png

FRAMEWORES END IAVISL'B.(P'I'

image46.emf


Jquery is the most popular framework (more information)



You can either download it and link it in your code, or link to a hosted version



Downloaded



‘freezes’ the version to whatever your downloaded



When jquery changes, it doesn’t impact your code



You don’t get new features or abilities with new releases unless you redownload



Takes space on your website (small, so not really an issue)



Hosted



You just link to it



Most up to date version kept up to date by someone else



If the code changes, could break your code (but probably not)



Requires link to the ‘other’ server – if they go down, your code doesn’t work



Google is your best bet for hosted solution



Google stays up most of the time



You can specify which version you want



How to link to Google’s hosted

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>

If you want a different version, just change the number from 1.10.2 to whatever version, say 2.0.3

Google’s list of hosted libraries.

46

Microsoft_PowerPoint_Slide45.sldx
Jquery

Jquery is the most popular framework (more information)

You can either download it and link it in your code, or link to a hosted version

Downloaded

‘freezes’ the version to whatever your downloaded

When jquery changes, it doesn’t impact your code

You don’t get new features or abilities with new releases unless you redownload

Takes space on your website (small, so not really an issue)

Hosted

You just link to it

Most up to date version kept up to date by someone else

If the code changes, could break your code (but probably not)

Requires link to the ‘other’ server – if they go down, your code doesn’t work

Google is your best bet for hosted solution

Google stays up most of the time

You can specify which version you want

How to link to Google’s hosted

 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>

If you want a different version, just change the number from 1.10.2 to whatever version, say 2.0.3

Google’s list of hosted libraries.

46

image2.png

image3.png

image47.emf


The format for jquery tags are the same

$(selector).action()



Jquery knows how to start doing it’s job with a document ready call



This prevents any of the code running before the whole page has loaded



When a page loads, it starts from the top and works its way down



You want the code to run after everything has been made on the page

$document.ready(function()){

//Jquery code (or javascript code) goes here

});



You reference selectors by name, id, or class



By name:

$(“test”).

action

();



By id:

$(“#test”).

action

();



By class:

$(“.test”).

action

();



Actions are a things you can do to the item on the page

47

Microsoft_PowerPoint_Slide46.sldx
Jquery

The format for jquery tags are the same

$(selector).action()

Jquery knows how to start doing it’s job with a document ready call

This prevents any of the code running before the whole page has loaded

When a page loads, it starts from the top and works its way down

You want the code to run after everything has been made on the page

$document.ready(function()){

//Jquery code (or javascript code) goes here

});

You reference selectors by name, id, or class

By name: $(“test”).action();

By id: $(“#test”).action();

By class: $(“.test”).action();

Actions are a things you can do to the item on the page

47

image2.png

image3.png

